搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半绝缘GaAs的双调制反射光谱研究

刘雪璐 吴江滨 罗向东 谭平恒

半绝缘GaAs的双调制反射光谱研究

刘雪璐, 吴江滨, 罗向东, 谭平恒
PDF
导出引用
导出核心图
  • 半导体材料电子能带结构的确定对研究其物理性质及其在半导体器件方面的应用有重要意义.光调制反射光谱是一种无损和高灵敏度的表征半导体材料电子能带结构的光学手段.光调制反射光谱中激光调制导致的材料介电函数的变化在联合态密度奇点附近表现得更为明显.通过测量这些变化,可以得到有关材料能带结构临界点的信息.然而在传统的单调制反射光谱中,激光调制信号的光谱线型拟合和临界点数目的分析往往被瑞利散射和荧光信号所干扰.本文将双调制技术与双通道锁相放大器结合,消除了瑞利信号和荧光信号的干扰,获得了具有较高信噪比的调制反射光谱信号.双通道锁相放大器可以同时解调出反射光谱信号及其经泵浦激光调制后的细微变化量,避免了多次采集时可能存在的系统误差.利用这种技术,在可见激光(2.33 eV)泵浦下,我们测量了半绝缘GaAs体材料从近红外至紫外波段(1.1-6.0 eV)的双调制反射光谱,获得了多个能带结构临界点的信息.探测到了高于泵浦能量之上的与GaAs能带结构高阶临界点对应的特征光谱信号,说明带隙以上高阶临界点的光调制反射光谱本质是光生载流子对内建电场的调制,并不是来自该临界点附近的能带填充效应.这一结果表明双调制反射光谱能够对半导体材料能带结构带隙及其带隙以上临界点进行更准确的表征.
      通信作者: 罗向东, luoxd@ntu.edu.cn;phtan@semi.ac.cn ; 谭平恒, luoxd@ntu.edu.cn;phtan@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61474067,11474277,11434010)和国家重点研发计划(批准号:2016YFA0301204)资助的课题.
    [1]

    Aspnes D E 1973 Surf. Sci. 37 418

    [2]

    Pollak F H, Shen H 1989 Superlattices Microstruct. 6 203

    [3]

    Supplee J M, Whittaker E A, Lenth W 1994 Appl. Opt. 33 6294

    [4]

    Shen H, Dutta M, Fotiadis L, Newman P G, Moerkirk R P, Chang W H, Sacks R N 1990 Appl. Phys. Lett. 57 2118

    [5]

    Misiewicz J, Sitarek P, Sek G, Kudrawiec R 2003 Mater. Sci. 21 263

    [6]

    Chen X, Jung J, Qi Z, Zhu L, Park S, Zhu L, Yoon E, Shao J 2015 Opt. Lett. 40 5295

    [7]

    Badakhshan A, Glosser R, Lambert S 1991 J. Appl. Phys. 69 2525

    [8]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [9]

    Kanata T, Matsunaga M, Takakura H, Hamakawa Y, Nishino T 1991 J. Appl. Phys. 69 3691

    [10]

    Lin K I, Chen Y J, Wang B Y, Cheng Y C, Chen C H 2016 J. Appl. Phys. 119 115703

    [11]

    Dybala F, Polak M P, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R 2016 Sci. Rep. 6 26663

    [12]

    Theis W M, Sanders G D, Leak C E, Bajaj K K, Morkoc H 1988 Phys. Rev. B 37 3042

    [13]

    Sydor M, Badakhshan A 1991 J. Appl. Phys. 70 2322

    [14]

    Shao J, Chen L, L X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908

    [15]

    Ghosh S, Arora B M 1998 Rev. Sci. Instrum. 69 1261

    [16]

    Plaza J, Ghita D, Castano J L, Garcia B J 2007 J. Appl. Phys. 102 093507

    [17]

    Qin J H, Huang Z M, Ge Y J, Hou Y, Chu J H 2009 Rev. Sci. Instrum. 80 033112

    [18]

    Kudrawiec R, Misiewicz J 2009 Rev. Sci. Instrum. 80 096103

    [19]

    Kita T, Yamada M, Wada O 2008 Rev. Sci. Instrum. 79 046110

    [20]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [21]

    Ben Sedrine N, Moussa I, Fitouri H, Rebey A, El Jani B, Chtourou R 2009 Appl. Phys. Lett. 95 011910

    [22]

    Aspnes D E, Studna A A 1973 Phys. Rev. B 7 4605

    [23]

    Nahory R E, Shay J L 1968 Phys. Rev. Lett. 21 1569

    [24]

    Lastras-Martnez L F, Chavira-Rodrguez M, Lastras-Martnez A, Balderas-Navarro R E 2002 Phys. Rev. B 66 075315

    [25]

    Shay J L 1970 Phys. Rev. B 2 803

    [26]

    Wang R, Jiang D 1992 J. Appl. Phys. 72 3826

    [27]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [28]

    Glembocki O J, Shanabrook B V, Bottka N, Beard W T, Comas J 1985 Appl. Phys. Lett. 46 970

    [29]

    Jo H J, So M G, Kim J S, Lee S J 2016 J. Korean Phys. Soc. 69 826

    [30]

    Klar P J, Townsley C M, Wolverson D, Davies J J, Ashenford D E, Lunn B 1995 Semicond. Sci. Technol. 10 1568

  • [1]

    Aspnes D E 1973 Surf. Sci. 37 418

    [2]

    Pollak F H, Shen H 1989 Superlattices Microstruct. 6 203

    [3]

    Supplee J M, Whittaker E A, Lenth W 1994 Appl. Opt. 33 6294

    [4]

    Shen H, Dutta M, Fotiadis L, Newman P G, Moerkirk R P, Chang W H, Sacks R N 1990 Appl. Phys. Lett. 57 2118

    [5]

    Misiewicz J, Sitarek P, Sek G, Kudrawiec R 2003 Mater. Sci. 21 263

    [6]

    Chen X, Jung J, Qi Z, Zhu L, Park S, Zhu L, Yoon E, Shao J 2015 Opt. Lett. 40 5295

    [7]

    Badakhshan A, Glosser R, Lambert S 1991 J. Appl. Phys. 69 2525

    [8]

    Perkins J D, Mascarenhas A, Zhang Y, Geisz J F, Friedman D J, Olson J M, Kurtz S R 1999 Phys. Rev. Lett. 82 3312

    [9]

    Kanata T, Matsunaga M, Takakura H, Hamakawa Y, Nishino T 1991 J. Appl. Phys. 69 3691

    [10]

    Lin K I, Chen Y J, Wang B Y, Cheng Y C, Chen C H 2016 J. Appl. Phys. 119 115703

    [11]

    Dybala F, Polak M P, Kopaczek J, Scharoch P, Wu K, Tongay S, Kudrawiec R 2016 Sci. Rep. 6 26663

    [12]

    Theis W M, Sanders G D, Leak C E, Bajaj K K, Morkoc H 1988 Phys. Rev. B 37 3042

    [13]

    Sydor M, Badakhshan A 1991 J. Appl. Phys. 70 2322

    [14]

    Shao J, Chen L, L X, Lu W, He L, Guo S, Chu J 2009 Appl. Phys. Lett. 95 041908

    [15]

    Ghosh S, Arora B M 1998 Rev. Sci. Instrum. 69 1261

    [16]

    Plaza J, Ghita D, Castano J L, Garcia B J 2007 J. Appl. Phys. 102 093507

    [17]

    Qin J H, Huang Z M, Ge Y J, Hou Y, Chu J H 2009 Rev. Sci. Instrum. 80 033112

    [18]

    Kudrawiec R, Misiewicz J 2009 Rev. Sci. Instrum. 80 096103

    [19]

    Kita T, Yamada M, Wada O 2008 Rev. Sci. Instrum. 79 046110

    [20]

    Lautenschlager P, Garriga M, Logothetidis S, Cardona M 1987 Phys. Rev. B 35 9174

    [21]

    Ben Sedrine N, Moussa I, Fitouri H, Rebey A, El Jani B, Chtourou R 2009 Appl. Phys. Lett. 95 011910

    [22]

    Aspnes D E, Studna A A 1973 Phys. Rev. B 7 4605

    [23]

    Nahory R E, Shay J L 1968 Phys. Rev. Lett. 21 1569

    [24]

    Lastras-Martnez L F, Chavira-Rodrguez M, Lastras-Martnez A, Balderas-Navarro R E 2002 Phys. Rev. B 66 075315

    [25]

    Shay J L 1970 Phys. Rev. B 2 803

    [26]

    Wang R, Jiang D 1992 J. Appl. Phys. 72 3826

    [27]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [28]

    Glembocki O J, Shanabrook B V, Bottka N, Beard W T, Comas J 1985 Appl. Phys. Lett. 46 970

    [29]

    Jo H J, So M G, Kim J S, Lee S J 2016 J. Korean Phys. Soc. 69 826

    [30]

    Klar P J, Townsley C M, Wolverson D, Davies J J, Ashenford D E, Lunn B 1995 Semicond. Sci. Technol. 10 1568

  • [1] 包志华, 景为平, 罗向东, 谭平恒. 显微光谱研究半绝缘GaAs带边以上E0+Δ0光学性质. 物理学报, 2007, 56(7): 4213-4217. doi: 10.7498/aps.56.4213
    [2] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [3] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [4] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [5] 戴中华, 钱一辰, 谢耀平, 胡丽娟, 李晓娣, 马海涛. 非对称双轴张应变对锗能带的影响. 物理学报, 2017, 66(16): 167101. doi: 10.7498/aps.66.167101
    [6] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [7] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [8] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [9] 张振方, 郁殿龙, 刘江伟, 温激鸿. 内插扩张室声子晶体管路带隙特性研究. 物理学报, 2018, 67(7): 074301. doi: 10.7498/aps.67.20172383
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 常本康, 杨 智, 邹继军. 指数掺杂GaAs光电阴极量子效率的理论计算. 物理学报, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [12] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [13] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究. 物理学报, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [14] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
    [15] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [16] 刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星. 公度双壁碳纳米管层间耦合对其场发射特性影响的研究. 物理学报, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
    [17] 海文华, 蔡丽华, 邬云文. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [18] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [19] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [20] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
  • 引用本文:
    Citation:
计量
  • 文章访问数:  411
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-07-20

半绝缘GaAs的双调制反射光谱研究

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083;
  • 2. 中国科学院大学材料科学与光电技术学院, 北京 101408;
  • 3. 南通大学, 江苏省专用集成电路设计重点实验室, 南通 226019
  • 通信作者: 罗向东, luoxd@ntu.edu.cn;phtan@semi.ac.cn ; 谭平恒, luoxd@ntu.edu.cn;phtan@semi.ac.cn
    基金项目: 

    国家自然科学基金(批准号:61474067,11474277,11434010)和国家重点研发计划(批准号:2016YFA0301204)资助的课题.

摘要: 半导体材料电子能带结构的确定对研究其物理性质及其在半导体器件方面的应用有重要意义.光调制反射光谱是一种无损和高灵敏度的表征半导体材料电子能带结构的光学手段.光调制反射光谱中激光调制导致的材料介电函数的变化在联合态密度奇点附近表现得更为明显.通过测量这些变化,可以得到有关材料能带结构临界点的信息.然而在传统的单调制反射光谱中,激光调制信号的光谱线型拟合和临界点数目的分析往往被瑞利散射和荧光信号所干扰.本文将双调制技术与双通道锁相放大器结合,消除了瑞利信号和荧光信号的干扰,获得了具有较高信噪比的调制反射光谱信号.双通道锁相放大器可以同时解调出反射光谱信号及其经泵浦激光调制后的细微变化量,避免了多次采集时可能存在的系统误差.利用这种技术,在可见激光(2.33 eV)泵浦下,我们测量了半绝缘GaAs体材料从近红外至紫外波段(1.1-6.0 eV)的双调制反射光谱,获得了多个能带结构临界点的信息.探测到了高于泵浦能量之上的与GaAs能带结构高阶临界点对应的特征光谱信号,说明带隙以上高阶临界点的光调制反射光谱本质是光生载流子对内建电场的调制,并不是来自该临界点附近的能带填充效应.这一结果表明双调制反射光谱能够对半导体材料能带结构带隙及其带隙以上临界点进行更准确的表征.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回