搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响

阮璐风 王磊 孙得彦

Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响

阮璐风, 王磊, 孙得彦
PDF
导出引用
导出核心图
  • 采用基于密度泛函理论的第一性原理计算方法,系统地研究了La1-xSrxMnO3层中Sr的掺杂方式和掺杂量对4La1-xSrxMnO3/3LaAlO3/4SrTiO3(LSMO/LAO/STO)异质结构原子和电子结构的影响.结果表明:对于相同的Sr掺杂量,掺杂方式的差异对体系电子结构的影响微弱,不会导致体系发生金属-绝缘体转变;掺杂量的不同对体系电子结构有着显著的影响,当Sr的掺杂量较少时,LAO/STO界面处存在着准二维电子气,当Sr的掺杂量高于1/3时,LAO/STO界面处准二维电子气消失.我们相信,Sr的引入以及通过Sr掺杂量的改变可以对LSMO覆盖层极化进行调控,这也是导致体系LAO/STO界面处金属-绝缘体转变的可能原因,进一步为极化灾变机制导致的界面处电子重构提供了证据.
      通信作者: 孙得彦, dysun@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174079)和国家重点基础研究发展计划(批准号:2012CB921401)资助的课题.
    [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [2] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [3] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [4] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [5] 黄祖飞, 明 星, 王春忠, 孟 醒, 陈 岗, 金胜哲. 二价金属元素掺杂对LiCoO2体系电子输运性质的影响. 物理学报, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [6] 郭建云, 陈敬中, 郑 广, 何开华. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [7] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [8] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [9] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [11] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [12] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [13] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [14] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [15] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [16] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [17]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [18] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [19] 明 星, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗, 范厚刚. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
  • 引用本文:
    Citation:
计量
  • 文章访问数:  517
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 修回日期:  2017-06-10
  • 刊出日期:  2017-09-20

Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响

  • 1. 华东师范大学物理与材料科学学院物理学系, 上海 200241
  • 通信作者: 孙得彦, dysun@phy.ecnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11174079)和国家重点基础研究发展计划(批准号:2012CB921401)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理计算方法,系统地研究了La1-xSrxMnO3层中Sr的掺杂方式和掺杂量对4La1-xSrxMnO3/3LaAlO3/4SrTiO3(LSMO/LAO/STO)异质结构原子和电子结构的影响.结果表明:对于相同的Sr掺杂量,掺杂方式的差异对体系电子结构的影响微弱,不会导致体系发生金属-绝缘体转变;掺杂量的不同对体系电子结构有着显著的影响,当Sr的掺杂量较少时,LAO/STO界面处存在着准二维电子气,当Sr的掺杂量高于1/3时,LAO/STO界面处准二维电子气消失.我们相信,Sr的引入以及通过Sr掺杂量的改变可以对LSMO覆盖层极化进行调控,这也是导致体系LAO/STO界面处金属-绝缘体转变的可能原因,进一步为极化灾变机制导致的界面处电子重构提供了证据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回