搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用

任峰 阴生毅 卢志鹏 李阳 王宇 张申金 杨峰 卫东

深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用

任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东
PDF
导出引用
导出核心图
  • 对热扩散阴极表面微区发射状态进行原位观察和分析一直是热阴极研究的重要课题.本文着重介绍深紫外激光光发射电子/热发射电子显微镜的基本原理及其在热扩散阴极研究中的典型实例.系统配备了高温激活所用的加热装置,样品可被加热至1400 ℃.系统具有光发射电子、阴极热发射电子、光发射电子和阴极热发射电子联合三种电子成像模式.应用表明,对于热扩散阴极而言,深紫外激光光发射电子像适于呈现阴极表面的微观结构形貌;热发射电子像适于反映阴极表面的本征热电子发射及均匀性;光电子和热电子联合成像适于对阴极表面的有效发射点做出精确定位.
      通信作者: 阴生毅, ysy210@163.com
    • 基金项目: 国家科技重大专项(批准号:2012YQ120048)资助的课题.
    [1]

    Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]

    [2]

    Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]

    [3]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232

    [4]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321

    [5]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55

    [6]

    Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481

    [7]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329

    [8]

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006物理学报 55 6677]

    [9]

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]

    [10]

    Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [11]

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]

    [12]

    Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1

    [13]

    Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]

    [14]

    Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]

    [15]

    Bauer E 2001 J. Phys. Condens. Matter 13 11391

    [16]

    Wlegmann L 1972 J. Microsc. 96 1

    [17]

    Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187

    [18]

    Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259

    [19]

    Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]

    [20]

    Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]

    [21]

    Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148

    [22]

    Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258

  • [1]

    Gilmour Jr A S (Translated by Ding Y G, Zhang Z C) 2012 Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons (Beijing:National Defense Industry Press) pp39-40(in Chinese)[Gilmour Jr A S著(丁耀根, 张兆传译) 2012速调管、行波管、磁控管、正交场放大器和回旋管(北京:国防工业出版社)第3940页]

    [2]

    Wang W X 2012 Vacuum Electronic Devices (Beijing:National Defense Industry Press) p11(in Chinese)[王文祥2012真空电子器件(北京:国防工业出版社)第11页]

    [3]

    Jones D, Mcneely D, Swanson L W 1979 Appl. Surf. Sci. 2 232

    [4]

    Chen D S, Lindau I, Hecht M H, Viescas A J, Nogami J, Spicer W E 1982 Appl. Surf. Sci. 13 321

    [5]

    Brion D, Tonnerre J C, Shroff A M 1983 Appl. Surf. Sci. 16 55

    [6]

    Koenig M F, Grant J T 1985 Appl. Surf. Sci. 20 481

    [7]

    Ares Fang C S, Maloney C E 1990 J. Vac. Sci. Technol. A 8 2329

    [8]

    Li Y T, Zhang H L, Liu P K, Zhang M C 2006 Acta Phys. Sin. 55 6677(in Chinese)[李玉涛, 张洪来, 刘濮鲲, 张明晨2006物理学报 55 6677]

    [9]

    Yin S Y, Zhang H L, Yang J X, Urash I, Qian H J, Wang J O, Wang Y, Wang X X 2011 J. Electron. Inf. Technol. 33 3040(in Chinese)[阴生毅, 张洪来, 杨靖鑫, 奎热西, 钱海杰, 王嘉欧, 王宇, 王欣欣2011电子与信息学报 33 3040]

    [10]

    Wang J S, Wang Y M, Wang X, Zhang X Z, Yang F, Liu W, Zhou M L 2013 Proceedings of the 14th IEEE International Vacuum Electronics Conference Paris, France, May 21-23, 2013 p1

    [11]

    Liang W L, Wang Y M, Liu W, Li H Y, Wang J S 1984 J. Electron. Inf. Technol. 6 89(in Chinese)[张恩虬, 刘学悫1984电子科学学刊 6 89]

    [12]

    Motta C C 2016 Proceedings of the 17th IEEE International Vacuum Electronics Conference Monterey, USA, April 1921, 2016 p1

    [13]

    Zhang E Q, Liu X Q 1984 J. Electron. Inf. Technol. 6 89 (in Chinese) [张恩虬, 刘学悫1984 电子科学学刊6 89]

    [14]

    Fang H M, Su Q X, Su X C 1983 J. Vac. Sci. Technol. 3 91(in Chinese)[方厚民, 苏翘秀, 苏煦春1983真空科学与技术学报 3 91]

    [15]

    Bauer E 2001 J. Phys. Condens. Matter 13 11391

    [16]

    Wlegmann L 1972 J. Microsc. 96 1

    [17]

    Gnther S, Kaulich B, Gregoratti L, Kiskinova M 2002 Prog. Surf. Sci. 70 187

    [18]

    Turner D W, Plummer I R, Porter H Q 1984 J. Microsc. 136 259

    [19]

    Guo F Z 2010 Physics 39 211(in Chinese)[郭方准2010物理 39 211]

    [20]

    Ning X Y, Fu Q, Bao X H 2016 Acta Phys.-Chim. Sin. 32 171(in Chinese)[宁艳晓, 傅强, 包信和2016物理化学学报 32 171]

    [21]

    Engel W, Kordesch M E, Rotermund H H, Kubala S, Oertzen A V 1991 Ultramicroscopy 36 148

    [22]

    Yin S Y, Zhang Z C, Peng Z, Zheng Q, Wang Y 2013 IEEE Trans. Electron. Dev. 60 4258

  • [1] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [2] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [3] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 175(4): 494-499. doi: 10.7498/aps.29.494
    [4] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [5] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究. 物理学报, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [6] 罗谷风, 徐惠芳, 陈峻, 胡梅生. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [7] 吴全德. 用电子显微镜观察银氧铯光电阴极中的银胶粒和银颗粒. 物理学报, 1979, 1656(4): 553-562.
    [8] 阙文修, 姚熹. 镁离子内扩散铌酸锂研究(Ⅱ)—— X射线衍射和扫描电子显微镜表征. 物理学报, 1995, 44(4): 614-621. doi: 10.7498/aps.44.614
    [9] 傅平秋, 孔祐华, 李方华, 樊汉节, 杨大宇. 黄河矿的电子显微镜研究. 物理学报, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [10] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究. 物理学报, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [11] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量. 物理学报, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [12] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相. 物理学报, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [13] 林振金, 李方华, 杨大宇, 田静华, 李龙. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究. 物理学报, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [14] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [15] 阮美玲, 王震遐, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [16] 李方华. 用高分辨电子显微镜测定晶体结构. 物理学报, 1977, 156(5): 193-198. doi: 10.7498/aps.26.193
    [17] 钱临照, 何寿安. 铝单晶体滑移的电子显微镜颧察(二). 物理学报, 1955, 29(3): 290-292. doi: 10.7498/aps.11.290
    [18] 程万荣, 吴自勤. 铜合金薄膜高温行为的电子显微镜观察. 物理学报, 1982, 31(10): 1387-1394. doi: 10.7498/aps.31.1387
    [19] 杨翠英, 周玉清, 赵见高. 非晶态Tb-Fe薄膜的电子显微镜方法研究. 物理学报, 1982, 31(2): 180-184. doi: 10.7498/aps.31.180
    [20] 王卫宁, 倪东海, 方炎, 傅石友, 张鹏翔. KCI对银胶形态影响的电子显微镜研究. 物理学报, 1990, 39(1): 46-50. doi: 10.7498/aps.39.46
  • 引用本文:
    Citation:
计量
  • 文章访问数:  400
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-04
  • 修回日期:  2017-05-27
  • 刊出日期:  2017-09-20

深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用

  • 1. 中国科学院电子学研究所, 高功率微波源与技术实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100039;
  • 3. 中国科学院理化技术研究所, 功能晶体与激光技术重点实验室, 北京 100190;
  • 4. 北京中科科仪股份有限公司, 北京 100190
  • 通信作者: 阴生毅, ysy210@163.com
    基金项目: 

    国家科技重大专项(批准号:2012YQ120048)资助的课题.

摘要: 对热扩散阴极表面微区发射状态进行原位观察和分析一直是热阴极研究的重要课题.本文着重介绍深紫外激光光发射电子/热发射电子显微镜的基本原理及其在热扩散阴极研究中的典型实例.系统配备了高温激活所用的加热装置,样品可被加热至1400 ℃.系统具有光发射电子、阴极热发射电子、光发射电子和阴极热发射电子联合三种电子成像模式.应用表明,对于热扩散阴极而言,深紫外激光光发射电子像适于呈现阴极表面的微观结构形貌;热发射电子像适于反映阴极表面的本征热电子发射及均匀性;光电子和热电子联合成像适于对阴极表面的有效发射点做出精确定位.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回