搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究

范达志 刘贵立 卫琳

扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究

范达志, 刘贵立, 卫琳
PDF
导出引用
导出核心图
  • 基于密度泛函理论的第一性原理方法研究了扭转形变对石墨烯吸附O体系结构稳定性、电子结构和光学性质,包括吸附能、带隙、吸收系数及反射率的影响.研究发现,吸附O原子后,距O原子最近的C原子被拔起,导致石墨烯平面发生扭曲.吸附能计算表明,扭转形变使石墨烯吸附O原子体系结构稳定性下降,而扭转程度对结构稳定性影响微弱.能带结构分析发现,O原子的吸附使石墨烯由金属变成半导体,扭转形变发生时,可实现其从半导体到金属、再到半导体特性的转变.扭转角为12°的吸附O原子体系为间接带隙,而其他出现带隙的体系均为直接带隙.与本征石墨烯受扭体系相比,吸附O原子体系的电子结构对扭转形变的敏感度降低,其中扭转角在10°–16°范围内变化时,带隙始终稳定在0.11 eV附近,即在此扭转角范围内始终对应窄带隙半导体.在光学性能中,受扭转形变的吸附体系吸收系数和反射率峰值较未受扭转形变石墨烯吸附O原子体系均减弱,且随着扭转程度的加剧,均出现红移到蓝移的转变.
      通信作者: 刘贵立, lgl63@sina.cn
    • 基金项目: 国家自然科学基金(批准号:51371049)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubons S V, Firsov A A 2005 Nature 438 197

    [6]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [7]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [8]

    Sun J P, Zhou K L, Liang X D 2015 Acta Phys. Sin. 64 018201 (in Chinese) [孙建平, 周科良, 良晓东 2015 物理学报 64 018201]

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102

    [10]

    Pu N, Shi G, Liu Y, Sun X, Chang J, Sun C, Cer M, Chen C, Wang P, Peng Y, Wu C, Lawes S 2015 J. Power Sources 282 248

    [11]

    Zhou S, Liu G L, Fan D Z 2017 Physica B 506 156

    [12]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [13]

    Han M Y, Ouml, Zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [14]

    Singh A K, Penev E S, Yakobson B I 2010 ACS Nano 4 2510

    [15]

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 056103 (in Chinese) [李骏, 张振华, 王成志, 邓小清, 范志强 2012 物理学报 61 056103]

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [17]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Shanno D F 1970 Math. Comp. 24 647

    [21]

    Carlsson J M, Scheffler M 2006 Phys. Rev. Lett. 96 046806

    [22]

    Jin F, Zhang Z Y, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2012 物理学报 61 036103]

    [23]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotech. 2 605

    [24]

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [25]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [26]

    Varyhalov A, Sanchez B J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [27]

    Bao C, Yao W, Wang E, Chen C, Avila J, Asensio M C, Zhou S Y 2017 Nano Let. 17 1564

    [28]

    Horiuchi S, Gotou T, Fujiwara M, Sotoaka R, Hirata M, Kimoto K, Asaka T, Yokosawa T, Matsui Y, Watanabe K, Sekita M 2003 Jpn. J. Appl. Phys. 42 L1073

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [30]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [31]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [32]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 物理学报 58 1166]

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Novoselov K, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubons S V, Firsov A A 2005 Nature 438 197

    [6]

    Gong K P, Du F, Xia Z H, Durstock M, Dai L M 2009 Science 323 760

    [7]

    Yang L J, Jiang S J, Zhao Y, Zhu L, Chen S, Wang X Z, Wu Q, Ma J, Ma Y W, Hu Z 2011 Angew. Chem. Int. Ed. 50 7132

    [8]

    Sun J P, Zhou K L, Liang X D 2015 Acta Phys. Sin. 64 018201 (in Chinese) [孙建平, 周科良, 良晓东 2015 物理学报 64 018201]

    [9]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102

    [10]

    Pu N, Shi G, Liu Y, Sun X, Chang J, Sun C, Cer M, Chen C, Wang P, Peng Y, Wu C, Lawes S 2015 J. Power Sources 282 248

    [11]

    Zhou S, Liu G L, Fan D Z 2017 Physica B 506 156

    [12]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [13]

    Han M Y, Ouml, Zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [14]

    Singh A K, Penev E S, Yakobson B I 2010 ACS Nano 4 2510

    [15]

    Li J, Zhang Z H, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 056103 (in Chinese) [李骏, 张振华, 王成志, 邓小清, 范志强 2012 物理学报 61 056103]

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [17]

    Perdew J P, Burke K 1996 Phys. Rev. Lett. 77 3865

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Shanno D F 1970 Math. Comp. 24 647

    [21]

    Carlsson J M, Scheffler M 2006 Phys. Rev. Lett. 96 046806

    [22]

    Jin F, Zhang Z Y, Wang C Z, Deng X Q, Fan Z Q 2012 Acta Phys. Sin. 61 036103 (in Chinese) [金峰, 张振华, 王成志, 邓小清, 范志强 2012 物理学报 61 036103]

    [23]

    Avouris P, Chen Z, Perebeinos V 2007 Nat. Nanotech. 2 605

    [24]

    Sun J P, Miu Y M, Cao X C 2013 Acta Phys. Sin. 62 036301 (in Chinese) [孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301]

    [25]

    Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 物理学报 65 248103]

    [26]

    Varyhalov A, Sanchez B J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O 2008 Phys. Rev. Lett. 101 157601

    [27]

    Bao C, Yao W, Wang E, Chen C, Avila J, Asensio M C, Zhou S Y 2017 Nano Let. 17 1564

    [28]

    Horiuchi S, Gotou T, Fujiwara M, Sotoaka R, Hirata M, Kimoto K, Asaka T, Yokosawa T, Matsui Y, Watanabe K, Sekita M 2003 Jpn. J. Appl. Phys. 42 L1073

    [29]

    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [30]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [31]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [32]

    Hu Z G, Duan M Y, Xu M, Zhou X, Chen Q Y, Dong C J, Linghu R F 2009 Acta Phys. Sin. 58 1166 (in Chinese) [胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋 2009 物理学报 58 1166]

  • [1] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [2] 潘洪哲, 周海平, 祝文军, 徐 明. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [3] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [4] 刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙. Cu离子注入单晶TiO2微结构及光学性质的模拟研究. 物理学报, 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [5] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质. 物理学报, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [6] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [7] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [8] 侯芹英, 孔祥兰, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [9] 张宇飞, 郭志友, 曹东兴. ZnO(0001)表面吸附B的电子结构和光学性质研究. 物理学报, 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [10] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [11] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 物理学报, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [12] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质. 物理学报, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [13] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质. 物理学报, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] 彭 平, 梁君武, 胡慧芳, 韦建卫. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [15] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [16] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [17] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析. 物理学报, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [18] 宫丽, 冯现徉, 逯瑶, 张昌文, 王培吉. Ta掺杂对ZnO光电材料性能影响的研究. 物理学报, 2012, 61(9): 097101. doi: 10.7498/aps.61.097101
    [19] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [20] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
  • 引用本文:
    Citation:
计量
  • 文章访问数:  365
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 修回日期:  2017-09-06
  • 刊出日期:  2017-12-20

扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究

  • 1. 沈阳工业大学建筑工程学院, 沈阳 110870
  • 通信作者: 刘贵立, lgl63@sina.cn
    基金项目: 

    国家自然科学基金(批准号:51371049)资助的课题.

摘要: 基于密度泛函理论的第一性原理方法研究了扭转形变对石墨烯吸附O体系结构稳定性、电子结构和光学性质,包括吸附能、带隙、吸收系数及反射率的影响.研究发现,吸附O原子后,距O原子最近的C原子被拔起,导致石墨烯平面发生扭曲.吸附能计算表明,扭转形变使石墨烯吸附O原子体系结构稳定性下降,而扭转程度对结构稳定性影响微弱.能带结构分析发现,O原子的吸附使石墨烯由金属变成半导体,扭转形变发生时,可实现其从半导体到金属、再到半导体特性的转变.扭转角为12°的吸附O原子体系为间接带隙,而其他出现带隙的体系均为直接带隙.与本征石墨烯受扭体系相比,吸附O原子体系的电子结构对扭转形变的敏感度降低,其中扭转角在10°–16°范围内变化时,带隙始终稳定在0.11 eV附近,即在此扭转角范围内始终对应窄带隙半导体.在光学性能中,受扭转形变的吸附体系吸收系数和反射率峰值较未受扭转形变石墨烯吸附O原子体系均减弱,且随着扭转程度的加剧,均出现红移到蓝移的转变.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回