搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模光力系统中的非传统声子阻塞

石海泉 谢智强 徐勋卫 刘念华

多模光力系统中的非传统声子阻塞

石海泉, 谢智强, 徐勋卫, 刘念华
PDF
导出引用
导出核心图
  • 本文提出在多模光力系统中实现声子阻塞.多模光力系统由一个机械模和两个光学模组成.研究发现,当光学模与机械模同时受到外加驱动场作用时,即使在弱光力耦合条件下也可以实现声子阻塞效应,即非传统声子阻塞效应;给出了非传统声子阻塞效应出现的最佳条件.另外,发现通过调节外加驱动场间强度的比值和相位差可以控制声子的统计性质,这为实现可控的单声子源提供了一个有效方法.最后,讨论了热声子对非传统声子阻塞的不利影响,发现适当提高驱动场强度有利于观测非传统声子阻塞效应.
      通信作者: 刘念华, nhliu@ncu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11604096)和国家自然科学基金(批准号:11264030)资助的课题.
    [1]

    Imamoğlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [2]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [3]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [4]

    Dubin F, Russo C, Barros H G, Stute A, Becher C, Schmidt P O, Blatt R 2010 Nature Phys. 6 350

    [5]

    Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, Vučković J 2008 Nature Phys. 4 859

    [6]

    Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov Jr A A, Baur M, Filipp S, da Silva M P, Blais A, Wallraff A 2011 Phys. Rev. Lett. 106 243601

    [7]

    Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Treci H E, Houck A A 2011 Phys. Rev. Lett. 107 053602

    [8]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [9]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [10]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese)[陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211]

    [11]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese)[陈华俊, 米贤武 2011 物理学报 60 124206]

    [12]

    Zhang D, Zheng Q 2013 Chin. Phys. Lett. 30 024213

    [13]

    Jiang C, Cui Y, Li X 2016 Chin. Phys. B 25 54204

    [14]

    Rabl P 2011 Phys. Rev. Lett. 107 063601

    [15]

    Qiu L, Gan L, Ding W, Li Z Y 2013 J. Opt. Soc. Am. B 30 1683

    [16]

    Xu X W, Li Y J, Liu Y X 2013 Phys. Rev. A 87 025803

    [17]

    Liao J Q, Law C K 2013 Phys. Rev. A 87 043809

    [18]

    Liao J Q, Nori F 2013 Phys. Rev. A 88 023853

    [19]

    Hu D, Huang S Y, Liao J Q, Tian L, Goan H S 2015 Phys. Rev. A 91 013812

    [20]

    L X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 093602

    [21]

    Xie H, Lin G W, Chen X, Chen Z H, Lin X M 2016 Phys. Rev. A 93 063860

    [22]

    Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P, Nori F 2010 Phys. Rev. A 82 032101

    [23]

    Didier N, Pugnetti S, Blanter Y M, Fazio R 2011 Phys. Rev. B 84 054503

    [24]

    Miranowicz A, Bajer J, Lambert N, Liu Y X, Nori F 2016 Phys. Rev. A 93 013808

    [25]

    Wang X, Miranowicz A, Li H R, Nori F 2016 Phys. Rev. A 93 063861

    [26]

    Ramos T, Sudhir V, Stannigel K, Zoller P, Kippenberg T J 2013 Phys. Rev. Lett. 110 193602

    [27]

    Xu X W, Chen A X, Liu Y X 2016 Phys. Rev. A 94 063853

    [28]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602

    [29]

    Lörch N, Hammerer K 2015 Phys. Rev. A 91 061803

    [30]

    Seok H, Wright E M 2017 Phys. Rev. A 95 053844

    [31]

    Ludwig M, Safavi-Naeini A H, Painter O, Marquardt F 2012 Phys. Rev. Lett. 109 063601

    [32]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [33]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [34]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [35]

    Li H K, Ren X X, Liu Y C, Xiao Y F 2013 Phys. Rev. A 88 053850

    [36]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901

    [37]

    Wang H, Wang Z X, Zhang J,Özdemir S K, Yang L, Liu Y X 2014 Phys. Rev. A 90 053814

    [38]

    Gu W J, Li G X 2013 Phys. Rev. A 87 025804

    [39]

    Ojanen T, Børkje K 2014 Phys. Rev. A 90 013824

    [40]

    Guo Y J, Li K, Nie W J, Li Y 2014 Phys. Rev. A 90 053841

    [41]

    Liu Y C, Xiao Y F, Luan X S, Gong Q H, Wong C W 2015 Phys. Rev. A 91 033818

    [42]

    Xu X W, Li Y J 2013 J. Opt. B:At. Mol. Opt. Phys. 46 035502

    [43]

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205 (in Chinese)[陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205]

    [44]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601

    [45]

    Bamba M, Imamoglu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802

    [46]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824

    [47]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803

    [48]

    Kyriienko O, Shelykh I A, Liew T C H 2014 Phys. Rev. A 90 033807

    [49]

    Xu X W, Li Y 2014 Phys. Rev. A 90 033809

    [50]

    Xu X W, Li Y 2014 Phys. Rev. A 90 043822

    [51]

    Kyriienko O, Liew T C H 2014 Phys. Rev. A 90 063805

    [52]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808

    [53]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838

    [54]

    Tang J, Geng W, Xu X 2015 Sci. Rep. 5 9252

    [55]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviere R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nature Phys. 5 909

    [56]

    Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Lecture Notes in Physics vol. 18) (Berlin:Springer) pp9-13

    [57]

    Fang K, Matheny M M, Luan X, Painter O 2016 Nature Photon. 10 489

    [58]

    Han X, Zou C, Tang H 2016 Phys. Rev. Lett. 117 123603

  • [1]

    Imamoğlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [2]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [3]

    Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, Kimble H J 2008 Science 319 1062

    [4]

    Dubin F, Russo C, Barros H G, Stute A, Becher C, Schmidt P O, Blatt R 2010 Nature Phys. 6 350

    [5]

    Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, Vučković J 2008 Nature Phys. 4 859

    [6]

    Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov Jr A A, Baur M, Filipp S, da Silva M P, Blais A, Wallraff A 2011 Phys. Rev. Lett. 106 243601

    [7]

    Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Treci H E, Houck A A 2011 Phys. Rev. Lett. 107 053602

    [8]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [9]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [10]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese)[陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211]

    [11]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese)[陈华俊, 米贤武 2011 物理学报 60 124206]

    [12]

    Zhang D, Zheng Q 2013 Chin. Phys. Lett. 30 024213

    [13]

    Jiang C, Cui Y, Li X 2016 Chin. Phys. B 25 54204

    [14]

    Rabl P 2011 Phys. Rev. Lett. 107 063601

    [15]

    Qiu L, Gan L, Ding W, Li Z Y 2013 J. Opt. Soc. Am. B 30 1683

    [16]

    Xu X W, Li Y J, Liu Y X 2013 Phys. Rev. A 87 025803

    [17]

    Liao J Q, Law C K 2013 Phys. Rev. A 87 043809

    [18]

    Liao J Q, Nori F 2013 Phys. Rev. A 88 023853

    [19]

    Hu D, Huang S Y, Liao J Q, Tian L, Goan H S 2015 Phys. Rev. A 91 013812

    [20]

    L X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 093602

    [21]

    Xie H, Lin G W, Chen X, Chen Z H, Lin X M 2016 Phys. Rev. A 93 063860

    [22]

    Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P, Nori F 2010 Phys. Rev. A 82 032101

    [23]

    Didier N, Pugnetti S, Blanter Y M, Fazio R 2011 Phys. Rev. B 84 054503

    [24]

    Miranowicz A, Bajer J, Lambert N, Liu Y X, Nori F 2016 Phys. Rev. A 93 013808

    [25]

    Wang X, Miranowicz A, Li H R, Nori F 2016 Phys. Rev. A 93 063861

    [26]

    Ramos T, Sudhir V, Stannigel K, Zoller P, Kippenberg T J 2013 Phys. Rev. Lett. 110 193602

    [27]

    Xu X W, Chen A X, Liu Y X 2016 Phys. Rev. A 94 063853

    [28]

    Nunnenkamp A, Børkje K, Girvin S M 2011 Phys. Rev. Lett. 107 063602

    [29]

    Lörch N, Hammerer K 2015 Phys. Rev. A 91 061803

    [30]

    Seok H, Wright E M 2017 Phys. Rev. A 95 053844

    [31]

    Ludwig M, Safavi-Naeini A H, Painter O, Marquardt F 2012 Phys. Rev. Lett. 109 063601

    [32]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [33]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [34]

    Tian L 2012 Phys. Rev. Lett. 108 153604

    [35]

    Li H K, Ren X X, Liu Y C, Xiao Y F 2013 Phys. Rev. A 88 053850

    [36]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901

    [37]

    Wang H, Wang Z X, Zhang J,Özdemir S K, Yang L, Liu Y X 2014 Phys. Rev. A 90 053814

    [38]

    Gu W J, Li G X 2013 Phys. Rev. A 87 025804

    [39]

    Ojanen T, Børkje K 2014 Phys. Rev. A 90 013824

    [40]

    Guo Y J, Li K, Nie W J, Li Y 2014 Phys. Rev. A 90 053841

    [41]

    Liu Y C, Xiao Y F, Luan X S, Gong Q H, Wong C W 2015 Phys. Rev. A 91 033818

    [42]

    Xu X W, Li Y J 2013 J. Opt. B:At. Mol. Opt. Phys. 46 035502

    [43]

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205 (in Chinese)[陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205]

    [44]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601

    [45]

    Bamba M, Imamoglu A, Carusotto I, Ciuti C 2011 Phys. Rev. A 83 021802

    [46]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824

    [47]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803

    [48]

    Kyriienko O, Shelykh I A, Liew T C H 2014 Phys. Rev. A 90 033807

    [49]

    Xu X W, Li Y 2014 Phys. Rev. A 90 033809

    [50]

    Xu X W, Li Y 2014 Phys. Rev. A 90 043822

    [51]

    Kyriienko O, Liew T C H 2014 Phys. Rev. A 90 063805

    [52]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808

    [53]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838

    [54]

    Tang J, Geng W, Xu X 2015 Sci. Rep. 5 9252

    [55]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Riviere R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nature Phys. 5 909

    [56]

    Carmichael H J 1993 An Open Systems Approach to Quantum Optics (Lecture Notes in Physics vol. 18) (Berlin:Springer) pp9-13

    [57]

    Fang K, Matheny M M, Luan X, Painter O 2016 Nature Photon. 10 489

    [58]

    Han X, Zou C, Tang H 2016 Phys. Rev. Lett. 117 123603

  • [1] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究. 物理学报, 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [2] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [3] 刘福绥, 范希庆, 刘砚章, 王淮生. 多声子强耦合超导理论. 物理学报, 1989, 38(1): 53-59. doi: 10.7498/aps.38.53
    [4] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [5] 陈鸿, 吴翔, 石云龙, 聂一行. 量子隧道态-声子耦合系统的变分法研究. 物理学报, 1992, 41(9): 1499-1503. doi: 10.7498/aps.41.1499
    [6] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [7] 秦卫阳, 王红瑾, 高行山. 非线性恢复力耦合的振动系统广义同步与参数识别. 物理学报, 2008, 57(1): 42-45. doi: 10.7498/aps.57.42
    [8] 林敏, 张美丽. 力与耦合系统的交互作用和随机能量共振. 物理学报, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [9] 莫嘉琪, 林万涛, 王 辉. 地-气耦合动力系统的近似解析解. 物理学报, 2006, 55(2): 485-489. doi: 10.7498/aps.55.485
    [10] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [11] 德光永辅, 小长井诚, 白樫淳一, 野崎真次, 高桥清, 齐鸣, 罗晋生. 重碳掺杂p型GaAs中纵光学声子与等离振子耦合模的Raman散射特性. 物理学报, 1993, 42(6): 963-968. doi: 10.7498/aps.42.963
    [12] 罗质华. 双能态自旋-晶格声子耦合量子隧道系统的非经典能态和量子相干耗散. 物理学报, 2013, 62(20): 207201. doi: 10.7498/aps.62.207201
    [13] 方志烈, 劳浦东, 陆卫, 叶红娟, 陶凤翔, 沈学础. 液相外延GaAs1-xPx混晶的光学声子、等离子体激元和LO声子-等离子体激元耦合模. 物理学报, 1987, 36(7): 965-973. doi: 10.7498/aps.36.965
    [14] 陆卫;叶红娟;陶凤翔;沈学础;方志烈;劳浦东. 液相外延GaAs_(1-x)_P_x_混晶的光学声子,等离子体激元和LO声子-等离子激元耦合模. 物理学报, 1987, 36(8): 965-973.
    [15] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [16] 张玉爱, 江德生, 许振嘉. InP的多声子红外吸收. 物理学报, 1986, 35(7): 905-913. doi: 10.7498/aps.35.905
    [17] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控. 物理学报, 2019, 68(5): 054201. doi: 10.7498/aps.68.20181424
    [18] 田瑞兰, 王 炜, 张琪昌. 一类机电耦合非线性动力系统的混沌动力学特征. 物理学报, 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [19] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [20] 曹小群, 宋君强, 张卫民, 赵军, 朱小谦. 海-气耦合动力系统的改进变分迭代解法. 物理学报, 2012, 61(3): 030203. doi: 10.7498/aps.61.030203
  • 引用本文:
    Citation:
计量
  • 文章访问数:  326
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-02-20

多模光力系统中的非传统声子阻塞

  • 1. 南昌大学材料科学与工程学院, 南昌 330031;
  • 2. 华东交通大学应用物理系, 南昌 330013;
  • 3. 南昌大学高等研究院, 南昌 330031
  • 通信作者: 刘念华, nhliu@ncu.edu.cn
    基金项目: 

    国家自然科学基金青年科学基金(批准号:11604096)和国家自然科学基金(批准号:11264030)资助的课题.

摘要: 本文提出在多模光力系统中实现声子阻塞.多模光力系统由一个机械模和两个光学模组成.研究发现,当光学模与机械模同时受到外加驱动场作用时,即使在弱光力耦合条件下也可以实现声子阻塞效应,即非传统声子阻塞效应;给出了非传统声子阻塞效应出现的最佳条件.另外,发现通过调节外加驱动场间强度的比值和相位差可以控制声子的统计性质,这为实现可控的单声子源提供了一个有效方法.最后,讨论了热声子对非传统声子阻塞的不利影响,发现适当提高驱动场强度有利于观测非传统声子阻塞效应.

English Abstract

参考文献 (58)

目录

    /

    返回文章
    返回