搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金刚石色心自旋磁共振效应的微位移测量方法

王磊 郭浩 陈宇雷 伍大锦 赵锐 刘文耀 李春明 夏美晶 赵彬彬 朱强 唐军 刘俊

基于金刚石色心自旋磁共振效应的微位移测量方法

王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊
PDF
导出引用
导出核心图
  • 基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.
      通信作者: 唐军, tangjun@nuc.edu.cn;liuj@nuc.edu.cn ; 刘俊, tangjun@nuc.edu.cn;liuj@nuc.edu.cn
    • 基金项目: 国家自然科学基金国家重大科研仪器研制项目(批准号:51727808)、国家自然科学基金重点项目(批准号:51635011)、山西省青年拔尖人才计划(批准号:2016002)和山西省1331工程重点学科建设计划经费资助的课题.
    [1]

    Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295

    [2]

    Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504

    [3]

    Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181

    [4]

    Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342

    [5]

    Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219

    [6]

    Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]

    [8]

    Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84

    [9]

    Liu Y T, Li B J 2016 Precis. Eng. 46 118

    [10]

    Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89

    [11]

    Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864

    [12]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320

    [13]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [14]

    Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065

    [15]

    Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202

    [16]

    Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393

    [17]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125

    [18]

    Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403

    [19]

    Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802

    [20]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [21]

    Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191

    [22]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [23]

    Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330

    [24]

    Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]

    [25]

    Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]

  • [1]

    Dufrene Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C Muller D J 2017 Nat. Nanotechnol. 12 295

    [2]

    Maroufi M, Bazaei A, Moheimani S O R 2015 IEEE T. Contr. Sys. T. 23 504

    [3]

    Swart I, Liljeroth P, Vanmaekelbergh D 2016 Chem. Rev. 116 11181

    [4]

    Jiang C S, Repins I L, Beal C, Moutinho H R, Ramanathan K, Al-Jassim M M 2015 Sol. Energ. Mat. Sol. C 132 342

    [5]

    Braunsmann C, Proksch R, Revenko I, Schaffer T E 2014 Polymer 55 219

    [6]

    Voss A, Stark R W, Dietz C 2014 Macromolecules 47 5236

    [7]

    An P, Guo H, Chen M, Zhao M M, Yang J T, Liu J, Xue C Y, Tang J 2014 Acta Phys. Sin. 63 237306 (in Chinese)[安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军 2014 物理学报 63 237306]

    [8]

    Parali L, Pechousek J, Sabikoglu L, Novak P, Navarik J, Vujtek M 2016 Optik 127 84

    [9]

    Liu Y T, Li B J 2016 Precis. Eng. 46 118

    [10]

    Peng Y X, Ito S, Shimizu Y, Azuma T, Gao W, Niwa E 2014 Sensor Actuat. A:Phys. 211 89

    [11]

    Kronenberg N M, Liehm P, Steude A, Knipper J A, Borger J G, Scarcelli G, Franze K, Powis S J, Gather M C 2017 Nat. Cell Biol. 19 864

    [12]

    Maletinsky P, Hong S, Grinolds M S, Hausmann B, Lukin M D, Walsworth R L, Loncar M, Yacoby A 2012 Nat. Nanotechnol. 7 320

    [13]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [14]

    Cai J, Jelezko F, Plenio M B 2014 Nat. Commun. 5 4065

    [15]

    Le S D, Pham L M, Bar G N, Belthangady C, Lukin M D, Yacoby A, Walsworth R L 2012 Phys. Rev. B 85 121202

    [16]

    Clevenson H, Trusheim M E, Teale C, Schroder T, Braje D, Englund D 2015 Nat. Phys. 11 393

    [17]

    Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E, Awschalom D D 2010 Appl. Phys. Lett. 96 125

    [18]

    Guo H, Chen Y L, Wu D J, Zhao R, Tang J, Ma Z M, Xue C Y, Zhang W D, Liu J 2017 Opt. Lett. 43 403

    [19]

    Jensen K, Leefer N, Jarmola A, Dumeige Y, Acosta V M, Kehayias P, Patton B, Budker D 2014 Phys. Rev. Lett. 112 160802

    [20]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常艳春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [21]

    Lai N D, Zheng D W, Jelezko F, Treussart F, Roch J F 2009 Appl. Phys. Lett. 95 191

    [22]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Homud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [23]

    Matsuzaki Y, Shimooka T, Tanaka H, Tokura Y, Semba K, Mizuoch N 2016 Phys. Rev. A 94 052330

    [24]

    Ma J, Yang W M, Li J W, Wang M, Chen S L 2012 Acta Phys. Sin. 61 137401 (in Chinese)[马俊, 杨万民, 李佳伟, 王妙, 陈森林 2012 物理学报 61 137401]

    [25]

    Wang R K, Zuo H F, L M 2011 Aero. Compu. Tech. 41 19 (in Chinese)[王瑞凯, 左洪福, 吕萌 2011 航空计算技术 41 19]

  • [1] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [2] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [3] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [4] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [5] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [6] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [7] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [8] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [9] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [10] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [11] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [12] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [13] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [14] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [15] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [16] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [17] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [18] 杨治虎, 赵永涛, 殷纬纬, 李宁溪, 张小安. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [19] 王蕴玉, 张天保, 唐孝威. 正电子在铝中湮没γ射线能量的精密测量. 物理学报, 1982, 31(7): 945-947. doi: 10.7498/aps.31.945
    [20] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
  • 引用本文:
    Citation:
计量
  • 文章访问数:  400
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-12-14
  • 刊出日期:  2018-02-20

基于金刚石色心自旋磁共振效应的微位移测量方法

    基金项目: 

    国家自然科学基金国家重大科研仪器研制项目(批准号:51727808)、国家自然科学基金重点项目(批准号:51635011)、山西省青年拔尖人才计划(批准号:2016002)和山西省1331工程重点学科建设计划经费资助的课题.

摘要: 基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回