搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

敬玉梅 黄少云 吴金雄 彭海琳 徐洪起

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起
PDF
导出引用
导出核心图
  • 利用聚焦离子束刻蚀技术在拓扑绝缘体Bi2Se3薄膜中刻蚀了纳米尺度的反点(antidot)阵列,并对制作的三个器件进行了系统的电学输运测量研究.低温下,所有器件中都观察到明显的弱反局域化效应.通过对弱反局域化效应的分析,发现器件一(Dev-1,不含有antidot阵列)和器件二(Dev-2,含有周期较大的antidot阵列)是始终由一个导电通道主导的量子输运系统,但在器件三(Dev-3,含有周期较小的antidot阵列)中能明确观察到较低温度下存在两个独立的导电通道,而在较高温度下Dev-3表现为由一个导电通道主导的量子输运系统.
      通信作者: 黄少云, syhuang@pku.edu.cn;hqxu@pku.edu.cn ; 徐洪起, syhuang@pku.edu.cn;hqxu@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300601,2016YFA0300802,2017YFA0303304,2017YFA0204901)和国家自然科学基金(批准号:91221202,91421303,11274021)资助的课题.
    [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1]

    Moore J E 2010 Nature 464 194

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407

    [4]

    Qi X L, Li R, Zang J, Zhang S C 2009 Science 323 1184

    [5]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [6]

    Berry M V 1984 Proc. R. Soc. London Ser. A 392 45

    [7]

    Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. Lett. 109 066803

    [8]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [9]

    Hong S S, Zhang Y, Cha J J, Qi X L, Cui Y 2014 Nano Lett. 14 2815

    [10]

    Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452

    [11]

    Jing Y, Huang S, Zhang K, Wu J, Guo Y, Peng H, Liu Z, Xu H Q 2016 Nanoscale 8 1879

    [12]

    Weiss D 1991 Adv. Solid State Phys. 31 341

    [13]

    Weiss D, Richter K, Menschig A, Bergmann R, Schweizer H, von Klitzing K, Weimann G 1993 Phys. Rev. Lett. 70 4118

    [14]

    Peng H L, Dang W H, Cao J, Chen Y L, Wu W, Zheng W S, Li H, Shen Z X, Liu Z F 2012 Nat. Chem. 4 281

    [15]

    Rabin O, Nielsch K, Dresselhaus M S 2006 Appl. Phys. A 82 471

    [16]

    Ghaemi P, Mong R S K, Moore J E 2010 Phys. Rev. Lett. 105 166603

    [17]

    Tkachov G, Hankiewicz E M 2011 Phys. Rev. B 84 035444

    [18]

    Hikami S, Larkin A, Nagaoka Y 1980 Prog. Theor. Phys. 63 707

    [19]

    Altshuler B L, Aronov A G, Khmelnitsky D E 1982 J. Phys. C 15 7367

    [20]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [21]

    Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W, Oh S 2011 Phys. Rev. B 84 073109

    [22]

    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V, Wang K L 2012 ACS Nano 6 295

    [23]

    Takagaki Y, Jenichen B, Jahn U, Ramsteiner M, Friedland K J 2012 Phys. Rev. B 85 115314

    [24]

    Chiu S P, Lin J J 2013 Phys. Rev. B 87 035122

  • [1] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [2] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [3] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [4] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [5] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [7] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [8] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [9] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [10] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [12] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [13] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [14] 韦庞, 李康, 冯硝, 欧云波, 张立果, 王立莉, 何珂, 马旭村, 薛其坤. 在预刻蚀的衬底上通过分子束外延直接生长出拓扑绝缘体薄膜的微器件. 物理学报, 2014, 63(2): 027303. doi: 10.7498/aps.63.027303
    [15] 关童, 滕静, 吴克辉, 李永庆. 拓扑绝缘体(Bi0.5Sb0.5)2Te3薄膜中的线性磁阻. 物理学报, 2015, 64(7): 077201. doi: 10.7498/aps.64.077201
    [16] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [17] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应. 物理学报, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [18] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [19] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [20] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
  • 引用本文:
    Citation:
计量
  • 文章访问数:  553
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2017-12-06
  • 刊出日期:  2018-02-20

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

  • 1. 北京大学电子学系, 纳米器件物理与化学教育部重点实验室, 量子器件北京市重点实验室, 北京 100871;
  • 2. 北京大学化学与分子工程学院, 分子动态与稳态结构国家重点实验室, 北京分子科学国家实验室, 纳米化学研究中心, 北京 100871
  • 通信作者: 黄少云, syhuang@pku.edu.cn;hqxu@pku.edu.cn ; 徐洪起, syhuang@pku.edu.cn;hqxu@pku.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2016YFA0300601,2016YFA0300802,2017YFA0303304,2017YFA0204901)和国家自然科学基金(批准号:91221202,91421303,11274021)资助的课题.

摘要: 利用聚焦离子束刻蚀技术在拓扑绝缘体Bi2Se3薄膜中刻蚀了纳米尺度的反点(antidot)阵列,并对制作的三个器件进行了系统的电学输运测量研究.低温下,所有器件中都观察到明显的弱反局域化效应.通过对弱反局域化效应的分析,发现器件一(Dev-1,不含有antidot阵列)和器件二(Dev-2,含有周期较大的antidot阵列)是始终由一个导电通道主导的量子输运系统,但在器件三(Dev-3,含有周期较小的antidot阵列)中能明确观察到较低温度下存在两个独立的导电通道,而在较高温度下Dev-3表现为由一个导电通道主导的量子输运系统.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回