搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响

马俊 陈章龙 县涛 魏学刚 杨万民 陈森林 李佳伟

空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响

马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟
PDF
导出引用
导出核心图
  • 通过对空心圆柱形永磁体与单畴GdBCO超导体磁悬浮力的实验测量,研究了空心圆柱形永磁体内径(d)的变化对超导体磁悬浮力的影响.结果发现,当空心圆柱形永磁体内径从0 mm增加到26 mm时,超导磁悬浮力大小与空心圆柱形永磁体内径有着密切关系(最小测量间距Z=2 mm),所有超导磁悬浮力曲线都存在磁滞现象.随着空心圆柱形永磁体内径的增大,最小间距处超导磁悬浮力逐渐减小,从d=0 mm时的14.8 N减小为d=26 mm时的-0.1 N,d ≥20 mm时,最小间距处超导磁悬浮力出现负值;当0 mm≤ d d ≥ 5 mm时,超导磁悬浮力先增大后减小,最大超导磁悬浮力产生的位置随着内径的增大而变大.研究表明:只有科学合理地设计永磁体结构参数,才能获得较大的磁场强度,提高超导磁悬浮力特性.该结果对设计并优化磁悬浮轴承系统、环形轨道和超导体的实际应用具有一定的指导意义.
      通信作者: 马俊, mjun7302@163.com;yangwm@snnu.edu.cn ; 杨万民, mjun7302@163.com;yangwm@snnu.edu.cn
    • 基金项目: 青海省自然科学基金(批准号:2016-ZJ-915)、国家自然科学基金(批准号:51167016,51342001)、青海省135高层次人才资助和中央高校基本科研业务费专项资金(批准号:GK201305014)资助的课题.
    [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996

    [3]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [4]

    Wang J S, Wang S Y 2002 Physica C 378-381 809

    [5]

    Sha J J, Yao Z W 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军, 姚仲文 2000 物理学报 49 1356]

    [6]

    Feng Y, Zhou L, Yang W M, Zhang C P 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯勇, 周廉, 杨万民, 张翠萍 2000 物理学报 49 146]

    [7]

    Takahashi K, Ainslie M D, Fujishiro H, Naito T 2017 IEEE Trans. Appl. Supercon. 27 1

    [8]

    Shi Y, Babu N H, Iida K, Cardwell D A 2007 IEEE Trans. Appl. Supercond. 17 2984

    [9]

    Yang W M, Zhou L, Feng Y 1999 Chin. J. Low. Temp. Phys. 21 351 (in Chinese) [杨万民, 周廉, 冯勇 1999 低温物理学报 21 351]

    [10]

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401 (in Chinese) [王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401]

    [11]

    Zhu M, Ren Zh Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温物理学报 24 213]

    [12]

    Carles N, Alvaro S 2001 Phys. Rev. B 64 214507

    [13]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 39 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 物理学报 39 830]

    [14]

    Alvaro S, Carles N 2001 Phys. Rev. B 64 214506

    [15]

    Yang W M, Zhou L, Feng Y 2001 Physica C 34 5

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 物理学报 60 077401]

    [18]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 物理学报 60 027401]

    [19]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 物理学报 61 137401]

    [20]

    Ma J, Yang W M, Wang M 2013 Acta Phys. Sin. 62 227401 (in Chinese) [马俊, 杨万民, 王妙 2013 物理学报 62 227401]

    [21]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温物理学报 32 150]

    [22]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006 Physica C 347 445

    [23]

    Cheng S L, Yang W M, Zhou L, Li J W 2014 Physica C 496 39

    [24]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [25]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004

  • [1]

    John R H, Shaul H, Tomotake M 2005 Supercond. Sci. Technol. 18 S1

    [2]

    Miyagawa Y, Kameno H, Takahata R 1999 IEEE Trans. Appl. Supercond. 9 996

    [3]

    Nuria D V, Alvaro S, Carles N 2008 Appl. Phys. Lett. 92 042505

    [4]

    Wang J S, Wang S Y 2002 Physica C 378-381 809

    [5]

    Sha J J, Yao Z W 2000 Acta Phys. Sin. 49 1356 (in Chinese) [沙建军, 姚仲文 2000 物理学报 49 1356]

    [6]

    Feng Y, Zhou L, Yang W M, Zhang C P 2000 Acta Phys. Sin. 49 146 (in Chinese) [冯勇, 周廉, 杨万民, 张翠萍 2000 物理学报 49 146]

    [7]

    Takahashi K, Ainslie M D, Fujishiro H, Naito T 2017 IEEE Trans. Appl. Supercon. 27 1

    [8]

    Shi Y, Babu N H, Iida K, Cardwell D A 2007 IEEE Trans. Appl. Supercond. 17 2984

    [9]

    Yang W M, Zhou L, Feng Y 1999 Chin. J. Low. Temp. Phys. 21 351 (in Chinese) [杨万民, 周廉, 冯勇 1999 低温物理学报 21 351]

    [10]

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401 (in Chinese) [王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401]

    [11]

    Zhu M, Ren Zh Y, Wang S Y 2002 Chin. J. Low Temperature Phys. 24 213 (in Chinese) [朱敏, 任仲友, 王素玉 2002 低温物理学报 24 213]

    [12]

    Carles N, Alvaro S 2001 Phys. Rev. B 64 214507

    [13]

    Zhang F Y, Huang S L, Cao X W 1989 Acta Phys. Sin. 39 830 (in Chinese) [张凤英, 黄孙利, 曹效文 1989 物理学报 39 830]

    [14]

    Alvaro S, Carles N 2001 Phys. Rev. B 64 214506

    [15]

    Yang W M, Zhou L, Feng Y 2001 Physica C 34 5

    [16]

    Nuria D V, Alvaro S, Enric P 2007 Appl. Phys. Lett. 90 042503

    [17]

    Ma J, Yang W M 2011 Acta Phys. Sin. 60 077401 (in Chinese) [马俊, 杨万民 2011 物理学报 60 077401]

    [18]

    Ma J, Yang W M, Li G Z 2011 Acta Phys. Sin. 60 027401 (in Chinese) [马俊, 杨万民, 李国政 2011 物理学报 60 027401]

    [19]

    Ma J, Yang W M, Li J W 2012 Acta Phys. Sin. 61 137401 (in Chinese) [马俊, 杨万民, 李佳伟 2012 物理学报 61 137401]

    [20]

    Ma J, Yang W M, Wang M 2013 Acta Phys. Sin. 62 227401 (in Chinese) [马俊, 杨万民, 王妙 2013 物理学报 62 227401]

    [21]

    Cheng X F, Yang W M, Li G Z 2010 Chin. J. Low Temperature Phys. 32 150 (in Chinese) [程晓芳, 杨万民, 李国政 2010 低温物理学报 32 150]

    [22]

    Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P 2006 Physica C 347 445

    [23]

    Cheng S L, Yang W M, Zhou L, Li J W 2014 Physica C 496 39

    [24]

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401 (in Chinese) [郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401]

    [25]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004

  • [1] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [2] 杨万民, 马俊. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [3] 杨万民, 李国政, 程晓芳, 郭晓丹, 马俊. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [4] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [5] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响. 物理学报, 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [6] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [7] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [8] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [9] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应. 物理学报, 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [10] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性. 物理学报, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
    [11] 李国政, 杨万民. 单畴GdBCO超导块材制备方法的改进及超导特性研究. 物理学报, 2011, 60(4): 047401. doi: 10.7498/aps.60.047401
    [12] 李国政, 杨万民. 用一种新的装配方式制备单畴GdBCO超导块材. 物理学报, 2011, 60(3): 037401. doi: 10.7498/aps.60.037401
    [13] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [14] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [15] 沙建军, 闻海虎, 杨万里, 李世亮, 姚仲文, 郁金南, 郁 刚, 罗金汉. Y2BaCuO5粒子掺杂的单畴熔融织构YBCO超导体工艺与性能研究. 物理学报, 2000, 49(7): 1356-1361. doi: 10.7498/aps.49.1356
    [16] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响. 物理学报, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [17] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [18] 李国政, 杨万民. 用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材. 物理学报, 2010, 59(7): 5028-5034. doi: 10.7498/aps.59.5028
    [19] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [20] 王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂. 基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究. 物理学报, 2016, 65(8): 083701. doi: 10.7498/aps.65.083701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  301
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-09
  • 修回日期:  2018-01-26
  • 刊出日期:  2018-04-05

空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响

    基金项目: 

    青海省自然科学基金(批准号:2016-ZJ-915)、国家自然科学基金(批准号:51167016,51342001)、青海省135高层次人才资助和中央高校基本科研业务费专项资金(批准号:GK201305014)资助的课题.

摘要: 通过对空心圆柱形永磁体与单畴GdBCO超导体磁悬浮力的实验测量,研究了空心圆柱形永磁体内径(d)的变化对超导体磁悬浮力的影响.结果发现,当空心圆柱形永磁体内径从0 mm增加到26 mm时,超导磁悬浮力大小与空心圆柱形永磁体内径有着密切关系(最小测量间距Z=2 mm),所有超导磁悬浮力曲线都存在磁滞现象.随着空心圆柱形永磁体内径的增大,最小间距处超导磁悬浮力逐渐减小,从d=0 mm时的14.8 N减小为d=26 mm时的-0.1 N,d ≥20 mm时,最小间距处超导磁悬浮力出现负值;当0 mm≤ d d ≥ 5 mm时,超导磁悬浮力先增大后减小,最大超导磁悬浮力产生的位置随着内径的增大而变大.研究表明:只有科学合理地设计永磁体结构参数,才能获得较大的磁场强度,提高超导磁悬浮力特性.该结果对设计并优化磁悬浮轴承系统、环形轨道和超导体的实际应用具有一定的指导意义.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回