搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面羟基对碳纳米管摩擦行为和能量耗散的影响

王世伟 朱朋哲 李瑞

界面羟基对碳纳米管摩擦行为和能量耗散的影响

王世伟, 朱朋哲, 李瑞
PDF
导出引用
  • 本文采用分子动力学模拟研究了羟基对碳纳米管摩擦和能量耗散方式的影响.研究结果表明:由于界面间氢键的形成,碳纳米管所受的平均摩擦力明显增大;随着羟基比例的改变,界面间氢键的数量与摩擦力的变化趋势一致;碳纳米管的手性角对摩擦力有一定的影响,扶手椅型碳纳米管所受的摩擦力比其他类型的碳纳米管的大;直径对摩擦力的影响较大,直径越大界面间的摩擦力越大,其原因是大直径的碳纳米管底部变平导致界面接触面积增大;界面接枝羟基后,体系的声子态密度中出现羟基的振动峰;随羟基比例的增加,羟基的振动在能量耗散中起到更为重要的作用,当碳纳米管和硅基底的羟基比例为10%/20%时,体系能量耗散的主要途径由碳纳米管和硅基底的振动转变为羟基的振动.
      通信作者: 李瑞, lirui@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51475039,51405337)资助的课题.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 物理学报 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Scarselli M, Castrucci P, de Crescenzi M 2012 J. Phys.: Condens. Matter 24 313202

    [3]

    Liew K M, Wong C H, He X Q, Tan M J, Meguid S A 2004 Phys. Rev. B 69 1738

    [4]

    van der Wal R L, Miyoshi K, Street K, Tomasek A, Peng H, Liu Y, Margrave J, Khabashesku V 2005 Wear 259 738

    [5]

    Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y 2012 Nano Lett. 12 6043

    [6]

    Ko J H, Kwon S, Byun I S, Jin S C, Park B H, Kim Y H, Park J Y 2013 Tribol. Lett. 50 137

    [7]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701

    [8]

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101 (in Chinese) [李瑞, 密俊霞 2017 物理学报 66 046101]

    [9]

    Wang L F, Ma T B, Hu Y Z, Wang H 2012 Phys. Rev. B 86 125436

    [10]

    Chen J, Ratera I, Park J Y, Salmeron M 2006 Phys Rev. Lett. 96 236102

    [11]

    Zheng X, Lei G, Yao Q, Li Q, Miao Z, Xie X, Qiao S, Wang G, Ma T, Di Z, Luo J, Wang X 2016 Nat. Commun. 7 13204

    [12]

    Eckstein K H, Hartleb H, Achsnich M M, Schöppler F, Hertel T 2017 ACS Nano 11 10401

    [13]

    Kim S Y, Park H S 2009 Appl. Phys. Lett. 94 101918

    [14]

    Hu Y Z, Ma T B, Wang H 2013 Friction 1 24

    [15]

    Wang Z J, Ma T B, Hu Y Z, Xu L, Wang H 2015 Friction 3 170

    [16]

    Kajita S, Tohyama M, Washizu H, Ohmori T, Watanabe H, Shikata S 2015 Tribology Online 10 156

    [17]

    Cannara R J, Brukman M J, Cimatu K, Sumant A V, Baldelli S, Carpick R W 2007 Sci. 318 780

    [18]

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X 2015 Environ. Sci. Technol. 49 4255

    [19]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.:Condes. Matter 14 783

    [20]

    Tersoff J 1988 Phys. Rev. B 37 6991

    [21]

    Argyris D, Tummala N R, Striolo A, Cole D R 2008 J. Phys. Chem. C 112 13587

    [22]

    Hughes Z E, Shearer C J, Shapter J, Gale J D 2012 J. Phys. Chem. C 116 24943

    [23]

    Damm W, Frontera A, Tirado-Rives J, Jorgensen W L 1997 J. Comput. Chem. 18 1955

    [24]

    Ruoff R S, Hickman A P 1993 J. Phys. Chem. 97 2494

    [25]

    Mayo S L, Olafson B D, Goddard W A Ⅲ 1990 J. Phys. Chem. 94 8897

    [26]

    Plimpton S 1995 J. Comput. Phys 7 1

    [27]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407

    [28]

    Dresselhaus M S, Dresselhaus G, Saito R, Jorio A 2005 Phys. Rep. 409 47

    [29]

    Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Unl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404

    [30]

    Hart T R, Aggarwal R L, Lax B 1970 Phys. Rev. B 1 638

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1641
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-03-15
  • 刊出日期:  2018-04-05

界面羟基对碳纳米管摩擦行为和能量耗散的影响

  • 1. 北京科技大学机械工程学院, 北京 100083;
  • 2. 北京交通大学机械与电子控制工程学院, 北京 100044
  • 通信作者: 李瑞, lirui@ustb.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51475039,51405337)资助的课题.

摘要: 本文采用分子动力学模拟研究了羟基对碳纳米管摩擦和能量耗散方式的影响.研究结果表明:由于界面间氢键的形成,碳纳米管所受的平均摩擦力明显增大;随着羟基比例的改变,界面间氢键的数量与摩擦力的变化趋势一致;碳纳米管的手性角对摩擦力有一定的影响,扶手椅型碳纳米管所受的摩擦力比其他类型的碳纳米管的大;直径对摩擦力的影响较大,直径越大界面间的摩擦力越大,其原因是大直径的碳纳米管底部变平导致界面接触面积增大;界面接枝羟基后,体系的声子态密度中出现羟基的振动峰;随羟基比例的增加,羟基的振动在能量耗散中起到更为重要的作用,当碳纳米管和硅基底的羟基比例为10%/20%时,体系能量耗散的主要途径由碳纳米管和硅基底的振动转变为羟基的振动.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回