搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机阳离子对卤素钙钛矿太阳能电池性能的影响

张翱 陈云琳 闫君 张春秀

有机阳离子对卤素钙钛矿太阳能电池性能的影响

张翱, 陈云琳, 闫君, 张春秀
PDF
导出引用
  • 采用第一性原理计算了CH3NH3PbI3中有机部分CH3NH3+和CH3NH3的静电特性.结果表明:CH3NH3+具有强的亲电特性,CH3NH3的CH3-端具有弱亲电性,而NH3-端具有弱亲核性.发现在CH3NH3PbI3中CH3NH3+之间强静电排斥作用在相变中起着重要的作用,且在室温条件下CH3NH3+在无机笼中具备活性和无序的特性,使得TiO2/CH3NH3PbI3异质结中n型TiO2的电子通过界面扩散到CH3NH3PbI3材料,并与CH3NH3+结合形成CH3NH3,CH3NH3的静电特性导致在内建电场作用下更容易取向,取向的CH3NH3周围形成的静电场会变得更弱和更加均匀.这对无机框架上载流子的产生和传输更加有利,这样的异质结比传统的pn结具有更大优势.这是CH3NH3PbI3太阳能电池高的光电转换效率的重要原因.
      通信作者: 陈云琳, ylchen@bjtu.edu.cn
    • 基金项目: 教育部博士点基金(批准号:20130009110008)、北京市教委面上项目(批准号:KM201210015008)和北印英才(批准号:Byyc201316-007)资助的课题.
    [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 物理学报 65 237902]

  • [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 物理学报 65 237902]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1980
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-03-15
  • 刊出日期:  2019-05-20

有机阳离子对卤素钙钛矿太阳能电池性能的影响

  • 1. 北京交通大学理学院, 微纳材料及应用研究所, 北京 100044;
  • 2. 北京印刷学院基础部, 北京 102600
  • 通信作者: 陈云琳, ylchen@bjtu.edu.cn
    基金项目: 

    教育部博士点基金(批准号:20130009110008)、北京市教委面上项目(批准号:KM201210015008)和北印英才(批准号:Byyc201316-007)资助的课题.

摘要: 采用第一性原理计算了CH3NH3PbI3中有机部分CH3NH3+和CH3NH3的静电特性.结果表明:CH3NH3+具有强的亲电特性,CH3NH3的CH3-端具有弱亲电性,而NH3-端具有弱亲核性.发现在CH3NH3PbI3中CH3NH3+之间强静电排斥作用在相变中起着重要的作用,且在室温条件下CH3NH3+在无机笼中具备活性和无序的特性,使得TiO2/CH3NH3PbI3异质结中n型TiO2的电子通过界面扩散到CH3NH3PbI3材料,并与CH3NH3+结合形成CH3NH3,CH3NH3的静电特性导致在内建电场作用下更容易取向,取向的CH3NH3周围形成的静电场会变得更弱和更加均匀.这对无机框架上载流子的产生和传输更加有利,这样的异质结比传统的pn结具有更大优势.这是CH3NH3PbI3太阳能电池高的光电转换效率的重要原因.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回