搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑半金属材料的单晶生长研究进展

伊长江 王乐 冯子力 杨萌 闫大禹 王翠香 石友国

拓扑半金属材料的单晶生长研究进展

伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国
PDF
导出引用
导出核心图
  • 拓扑半金属已经成为凝聚态物理研究的一个热点领域,这类材料的单晶生长是研究其物理性质的基础.目前,对于拓扑材料的研究已经形成了以理论计算为指引,对潜在的拓扑材料进行单晶制备,并结合物性测量对理论预言加以验证的科研合作方式.在这种科研团队合作中,单晶生长起衔接作用.本文介绍了近年来拓扑半金属材料单晶生长方法,涵盖了拓扑Dirac半金属、Weyl半金属、Node-Line半金属以及其他打破常规分类的拓扑绝缘体及拓扑半金属材料等,并针对各个材料,详细总结了其生长方法.
      通信作者: 石友国, ygshi@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0302901,2016YFA0300604)、国家自然科学基金(批准号:11774399,11474330)、中国科学院战略性先导科技专项(B类)(批准号:XDB07020100)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-SLH043)资助的课题.
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Weng H, Dai X, Fang Z 2016 J. Phys.:Condens. Matter 28 303001

    [4]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [5]

    Xu S Y, Liu C, Kushwaha S K, Sanar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294

    [6]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J, Ong N P 2015 Science 350 413

    [7]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [8]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280

    [9]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C, Hasan Z 2014 Nat. Commun. 5 3786

    [10]

    Weng H M, Fang C, Fang Z, Bernrviget B A, Dai X 2015 Phys. Rev. X 5 011029

    [11]

    L B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724

    [12]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [13]

    Sun Y, Wu S C, Ali M N, Felser C, Yan B H 2015 Phys. Rev. B 92 161107

    [14]

    Deng K, Wan G, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105

    [15]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495

    [16]

    Feng B, Chan Y H, Feng Y, Liu R Y, Chou M Y, Kuroda K, Yaji K, Harasawa A, Moras P, Barinov A, Malaeb W, Bareille C, Kondo T, Shin S, Komori F, Chiang T C, Shi Y G, Matsuda L 2016 Phys. Rev. B 94 195134

    [17]

    Wu Y, Mou D X, Jo N H, Sun K W, Huang L N, Budko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113

    [18]

    Xu Q N, Song Z D, Nie S M, Weng H M, Fang Z, Dai X 2015 Phys. Rev. B 92 205310

    [19]

    Singha R, Pariari A K, Satpati B, Mandal P 2017 Proc. Natl. Acad. Sci. USA 114 2468

    [20]

    Fu B B, Yi C J, Zhang T T, Caputo M, Gao X, L B Q, Kong L Y, Huang Y B, Shi M, Vladimir S, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 arXiv:1712.00782[cond-mat.mtrl-sci]

    [21]

    Chang T R, Chen P J, Bian G, Huang S M, Zheng H, Neupert T, Sankar R, Xu S Y, Belopolski I, Chang G Q, Wang B K, Chou F C, Bansil A, Jeng H T, Lin H, Hasan M Z 2016 Phys. Rev. B 93 245130

    [22]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chin C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556

    [23]

    Guan S Y, Chen P J, Chu M W, Sankar R, Chou F C, Jeng H T, Chang C S, Chuang T M 2016 Sci. Adv. 2 1600894

    [24]

    Feng X, Yue C M, Song Z D, Wu Q S, Wen B 2018 Phys. Rev. Mater. 2 014202

    [25]

    Liu Z H, Lou R, Guo P J, Wang Q, Suan S S, Li C H, Thirupathaiah S, Fedorov A, Shen D W, Liu K, Lei H C, Wang S C 2017 arXiv:1712.03048[cond-mat.mtrl-sci]

    [26]

    Wang Q, Guo P J, Sun S S, Li C H, Liu K, Lu Z Y, Lei H C 2017 Phys. Rev. B 97 205105

    [27]

    Wang Z J, Alexandradinata A, Cava R J, Bernevig B A 2016 Nature 532 189

    [28]

    Yan B, Mchler L, Felser C 2012 Phys. Rev. Lett. 109 116406

    [29]

    Ma J Z, Yi C J, L B Q, Wang Z J, Nie S M, Wang L, Kong L Y, Huang Y B, Richard P, Zhang P, Yaji K, Kuroda K, Shin S, Weng H M, Bernevig B A, Shi Y G, Ding H 2017 Sci. Adv. 3 1602415

    [30]

    Zhu Z M, Winkler G W, Wu Q S, Soluyanov A A 2016 Phys. Rev. X 6 031003

    [31]

    L B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627

    [32]

    Ma J Z, He J B, Xu Y F, L B Q, Chen D, Zhu L W, Zhang S, Kong L Y, Gao X, Rong L Y, Huang Y B, Richard P, Xi C Y, Choi E S, Shao Y, Wang Y L, Gao H J, Dai X, Fang C, Weng H M, Chen G F, Qian T, Ding H 2018 Nat. Phys. 14 349

    [33]

    He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A, Chen G F 2017 Phys. Rev. B 95 195165

    [34]

    Tachibana M 2017 Mechanisms of Crystal Growth from Fluxed Solutions. In:Beginner's Guide to Flux Crystal Growth (Tokyo:Springer) pp23-41

    [35]

    Bugaris D E, zur Loye H C 2012 Angew. Chem. Int. Ed. 51 3780

    [36]

    Wanklyn B M, Maqsood A 1979 J. Mater. Sci. 14 1975

    [37]

    Tachibana M 2017 Mechanisms of Crystal Growth from Fluxed Solutions. In:Beginner's Guide to Flux Crystal Growth (Tokyo:Springer) pp61-74

    [38]

    Yan J Q, Sales B C, Susner M A, McGuire M A 2017 Phys. Rev. Mater. 1 023402

    [39]

    Kaldis E 1974 Principles of the Vapour Growth of Single Crystals. In:Crystal Growth (Boston:Springer) pp49-191

    [40]

    Schmidt P, Binnewies M, Glaum R 2013 Chemical Vapor Transport Reactions-Methods, Materials, Modeling. In:Advanced Topics on Crystal Growth (InTech Open) pp23-54

    [41]

    Gruehn R, Glaum R 2000 Angew. Chem. Int. Ed. 39 692

    [42]

    Hua G, Nie S, Song Z, Yu R, Xu G, Yao K 2018 arXiv:1801.02806[cond-mat.mtrl-sci]

    [43]

    Brauer G, Zintl E 1937 Zeitschrift fr Physikalische Chemie 37 323

    [44]

    Johnson C E, Fischer A K 1970 J. Less Common Metals 20 339

    [45]

    Kushwaha S K, Krizan J W, Feldman B E, Gyenis A, Randeria M T, Xiong J, Xu S Y, Alidoust N, Belopolski I, Liang T, Hasan Z M, Ong N P, Yazdani A, Cava R J 2015 APL Mater. 3 041504

    [46]

    Gukov O Y, Ugai Y A, Pshestanchik V R, Goncharov E G, Pakhomova N V 1970 Phase Diagram of the System Cd-As. (USSR:Voronezh State Univ.)

    [47]

    Gokcen N A (Massalski T B E ed.) 1990 Binary Alloy Phase Diagrams (Vol. 1) (2nd Ed.) (Materials Park Ohio:ASM International) pp320-323

    [48]

    Palenzona A, Manfrinetti P, Fornasini M L 1998 J. Alloys Compd. 280 211

    [49]

    Lorenz R, Plumbridge D 1913 Zeitschrift fr Anorganische und Allgemeine Chemie 83 228

    [50]

    Fang A F, Xu G, Dong T, Zheng P, Wang N L 2013 Sci. Rep. 3 1153

    [51]

    Yan L, Zhao J Z, Li Y, Lin C T, Liang A J, Hu C, Ding Y, Xu Y, He S L, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Weng H M, Dai X, Fang Z, Zhou X J 2015 Chin. Phys. Lett. 32 067303

    [52]

    Noh H J, Jeong J, Cho E J, Kim K, Min B I, Park B G 2017 Phys. Rev. Lett. 119 016401

    [53]

    Huang H, Zhou S, Duan W 2016 Phys. Rev. B 94 121117

    [54]

    Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y, Zhou S 2017 Phys. Rev. B 96 125102

    [55]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W, Zhou S 2017 Nat. Commun. 8 257

    [56]

    Fu B B, Yi C J, Wang Z J, Yang M, L B Q, Gao X, Li M, Huang Y, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 arXiv:1712.02500[cond-mat.mtrl-sci]

    [57]

    Fei F, Bo X, Wang P, Ying J, Chen B, Liu Q, Zhang Y, Sun Z, Qu F, Zhang Y, Li J, Song F, Wan X, Wang B, Wang G 2017 arXiv:1711.10909[cond-mat.mtrl-sci]

    [58]

    Okamoto H (Massalski T B E Ed.) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp3136-3139

    [59]

    Okamoto H (Massalski T B E ed.) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp2357, 2358

    [60]

    Lu H, Jia S 2017 Front Phys. 12 127211

    [61]

    Li Z L, Chen H X, Jin S F, Gan D, Wang W J, Guo L W, Chen X L 2016 Cryst. Growth Des. 16 1172

    [62]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806

    [63]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [64]

    Wang Z J, Vergniory M G, Kushwaha S, Hirschberger M, Chulkove E V, Ernst A, Ong N P, Robert J C, Bernevig B A 2016 Phys. Rev. Lett. 117 236401

    [65]

    Brewer L, Lamoreaux R H (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp2675, 2676

    [66]

    Ali M N, Xiong J, Flynn S, Quinn G, Leslie S, Haldolaarachchige N, Ong N P, Tao J, Cava R J 2014 Nature 514 205

    [67]

    Okamoto H (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) p3472

    [68]

    Guan T, Lin C J, Yang C L, Shi Y G, Ren C, Li Y Q, Weng H M, Dai X, Fang Z, Yan S S, Xiong P 2015 Phys. Rev. Lett. 115 087002

    [69]

    Lin C J, Yi C J, Shi Y G, Zhang L, Zhang G M, Mller J, Li Y Q 2016 Phys. Rev. B 94 224404

    [70]

    Lehmann H W, Emmenegger F P 1969 Solid State Commun. 7 965

    [71]

    Takahashi T 1970 J. Cryst. Growth 6 319

    [72]

    Yu R, Weng H M, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807

    [73]

    Quintela C X, Campbell N, Shao D F, Irwin J, Harris D T, Xie L, Anderson, T J, Reiser N, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2017 APL Matter. 5 096103

    [74]

    Schoop L M, Ali M N, Straer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin P S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696

    [75]

    Ali M N, Schoop L M, Garg C, Lippmann J M, Laa E, Lotsch B, Parkin P S S 2016 Sci. Adv. 2 e1601742

    [76]

    Higashi I, Takahashi Y, Atoda T 1976 J. Cryst. Growth 33 207

    [77]

    Nakano K, Hayashi H, Imura T 1974 J. Cryst. Growth 24-25 679

    [78]

    Sirtl E, Woerner L M 1972 J. Cryst. Growth 16 215

    [79]

    Murray J L 1988 Metall. Trans. A 19 243

    [80]

    Bradlyn B, Cano J, Wang Z J, Vergnioru M G, Felser V, Cava R J, Bernevig B A 2016 Science 353 6299

    [81]

    Vogel R, Schuster H U 1980 Z. Naturforsch. 35b 114

    [82]

    Sangster J, Pelton A D 1993 J. Phase Equilib. 14 510

    [83]

    Kurnakow N S 1900 Z. Anorg. Allg. Chem. 23 439

    [84]

    Jangg G, Lihl F, Legler E 1962 Z. MetaIlkd. 53 313

    [85]

    Guerin R, Sergent M, Chaudron G 1975 CR Acad. Sci. Ser. C 281 777

    [86]

    Shekhar C, Sun Y, Kumar N, Nicklas M, Manna K, Suess V, Young O, Leermakers I, Foerster T, Schmidt M, Muechler L, Werner P, Schnelle W, Zeitler U, Yan B H, Parkin S S P, Felser C 2017 arXiv:1703.03736[cond-mat.mtrl-sci]

    [87]

    Olesinski R W, Abbaschian G J (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 2) (2nd Ed.) (Materials Park, Ohio:ASM International) pp1967, 1968

    [88]

    Olesinski R W, Kanani N, Abbaschian G J (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 2) (2nd Ed.) (Materials Park, Ohio:ASM International) pp 1978, 1979

    [89]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Z L, Zhou Y, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Kenney-Benson C, Yang W G, Wu G, Wan X G, Shi Y G, Yang X P, Yang Z R 2017 arXiv:1710.00472[cond-mat.supr-con]

  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Weng H, Dai X, Fang Z 2016 J. Phys.:Condens. Matter 28 303001

    [4]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320

    [5]

    Xu S Y, Liu C, Kushwaha S K, Sanar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294

    [6]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J, Ong N P 2015 Science 350 413

    [7]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427

    [8]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280

    [9]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C, Hasan Z 2014 Nat. Commun. 5 3786

    [10]

    Weng H M, Fang C, Fang Z, Bernrviget B A, Dai X 2015 Phys. Rev. X 5 011029

    [11]

    L B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724

    [12]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [13]

    Sun Y, Wu S C, Ali M N, Felser C, Yan B H 2015 Phys. Rev. B 92 161107

    [14]

    Deng K, Wan G, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105

    [15]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495

    [16]

    Feng B, Chan Y H, Feng Y, Liu R Y, Chou M Y, Kuroda K, Yaji K, Harasawa A, Moras P, Barinov A, Malaeb W, Bareille C, Kondo T, Shin S, Komori F, Chiang T C, Shi Y G, Matsuda L 2016 Phys. Rev. B 94 195134

    [17]

    Wu Y, Mou D X, Jo N H, Sun K W, Huang L N, Budko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113

    [18]

    Xu Q N, Song Z D, Nie S M, Weng H M, Fang Z, Dai X 2015 Phys. Rev. B 92 205310

    [19]

    Singha R, Pariari A K, Satpati B, Mandal P 2017 Proc. Natl. Acad. Sci. USA 114 2468

    [20]

    Fu B B, Yi C J, Zhang T T, Caputo M, Gao X, L B Q, Kong L Y, Huang Y B, Shi M, Vladimir S, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 arXiv:1712.00782[cond-mat.mtrl-sci]

    [21]

    Chang T R, Chen P J, Bian G, Huang S M, Zheng H, Neupert T, Sankar R, Xu S Y, Belopolski I, Chang G Q, Wang B K, Chou F C, Bansil A, Jeng H T, Lin H, Hasan M Z 2016 Phys. Rev. B 93 245130

    [22]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chin C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556

    [23]

    Guan S Y, Chen P J, Chu M W, Sankar R, Chou F C, Jeng H T, Chang C S, Chuang T M 2016 Sci. Adv. 2 1600894

    [24]

    Feng X, Yue C M, Song Z D, Wu Q S, Wen B 2018 Phys. Rev. Mater. 2 014202

    [25]

    Liu Z H, Lou R, Guo P J, Wang Q, Suan S S, Li C H, Thirupathaiah S, Fedorov A, Shen D W, Liu K, Lei H C, Wang S C 2017 arXiv:1712.03048[cond-mat.mtrl-sci]

    [26]

    Wang Q, Guo P J, Sun S S, Li C H, Liu K, Lu Z Y, Lei H C 2017 Phys. Rev. B 97 205105

    [27]

    Wang Z J, Alexandradinata A, Cava R J, Bernevig B A 2016 Nature 532 189

    [28]

    Yan B, Mchler L, Felser C 2012 Phys. Rev. Lett. 109 116406

    [29]

    Ma J Z, Yi C J, L B Q, Wang Z J, Nie S M, Wang L, Kong L Y, Huang Y B, Richard P, Zhang P, Yaji K, Kuroda K, Shin S, Weng H M, Bernevig B A, Shi Y G, Ding H 2017 Sci. Adv. 3 1602415

    [30]

    Zhu Z M, Winkler G W, Wu Q S, Soluyanov A A 2016 Phys. Rev. X 6 031003

    [31]

    L B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627

    [32]

    Ma J Z, He J B, Xu Y F, L B Q, Chen D, Zhu L W, Zhang S, Kong L Y, Gao X, Rong L Y, Huang Y B, Richard P, Xi C Y, Choi E S, Shao Y, Wang Y L, Gao H J, Dai X, Fang C, Weng H M, Chen G F, Qian T, Ding H 2018 Nat. Phys. 14 349

    [33]

    He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A, Chen G F 2017 Phys. Rev. B 95 195165

    [34]

    Tachibana M 2017 Mechanisms of Crystal Growth from Fluxed Solutions. In:Beginner's Guide to Flux Crystal Growth (Tokyo:Springer) pp23-41

    [35]

    Bugaris D E, zur Loye H C 2012 Angew. Chem. Int. Ed. 51 3780

    [36]

    Wanklyn B M, Maqsood A 1979 J. Mater. Sci. 14 1975

    [37]

    Tachibana M 2017 Mechanisms of Crystal Growth from Fluxed Solutions. In:Beginner's Guide to Flux Crystal Growth (Tokyo:Springer) pp61-74

    [38]

    Yan J Q, Sales B C, Susner M A, McGuire M A 2017 Phys. Rev. Mater. 1 023402

    [39]

    Kaldis E 1974 Principles of the Vapour Growth of Single Crystals. In:Crystal Growth (Boston:Springer) pp49-191

    [40]

    Schmidt P, Binnewies M, Glaum R 2013 Chemical Vapor Transport Reactions-Methods, Materials, Modeling. In:Advanced Topics on Crystal Growth (InTech Open) pp23-54

    [41]

    Gruehn R, Glaum R 2000 Angew. Chem. Int. Ed. 39 692

    [42]

    Hua G, Nie S, Song Z, Yu R, Xu G, Yao K 2018 arXiv:1801.02806[cond-mat.mtrl-sci]

    [43]

    Brauer G, Zintl E 1937 Zeitschrift fr Physikalische Chemie 37 323

    [44]

    Johnson C E, Fischer A K 1970 J. Less Common Metals 20 339

    [45]

    Kushwaha S K, Krizan J W, Feldman B E, Gyenis A, Randeria M T, Xiong J, Xu S Y, Alidoust N, Belopolski I, Liang T, Hasan Z M, Ong N P, Yazdani A, Cava R J 2015 APL Mater. 3 041504

    [46]

    Gukov O Y, Ugai Y A, Pshestanchik V R, Goncharov E G, Pakhomova N V 1970 Phase Diagram of the System Cd-As. (USSR:Voronezh State Univ.)

    [47]

    Gokcen N A (Massalski T B E ed.) 1990 Binary Alloy Phase Diagrams (Vol. 1) (2nd Ed.) (Materials Park Ohio:ASM International) pp320-323

    [48]

    Palenzona A, Manfrinetti P, Fornasini M L 1998 J. Alloys Compd. 280 211

    [49]

    Lorenz R, Plumbridge D 1913 Zeitschrift fr Anorganische und Allgemeine Chemie 83 228

    [50]

    Fang A F, Xu G, Dong T, Zheng P, Wang N L 2013 Sci. Rep. 3 1153

    [51]

    Yan L, Zhao J Z, Li Y, Lin C T, Liang A J, Hu C, Ding Y, Xu Y, He S L, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Weng H M, Dai X, Fang Z, Zhou X J 2015 Chin. Phys. Lett. 32 067303

    [52]

    Noh H J, Jeong J, Cho E J, Kim K, Min B I, Park B G 2017 Phys. Rev. Lett. 119 016401

    [53]

    Huang H, Zhou S, Duan W 2016 Phys. Rev. B 94 121117

    [54]

    Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y, Zhou S 2017 Phys. Rev. B 96 125102

    [55]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W, Zhou S 2017 Nat. Commun. 8 257

    [56]

    Fu B B, Yi C J, Wang Z J, Yang M, L B Q, Gao X, Li M, Huang Y, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 arXiv:1712.02500[cond-mat.mtrl-sci]

    [57]

    Fei F, Bo X, Wang P, Ying J, Chen B, Liu Q, Zhang Y, Sun Z, Qu F, Zhang Y, Li J, Song F, Wan X, Wang B, Wang G 2017 arXiv:1711.10909[cond-mat.mtrl-sci]

    [58]

    Okamoto H (Massalski T B E Ed.) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp3136-3139

    [59]

    Okamoto H (Massalski T B E ed.) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp2357, 2358

    [60]

    Lu H, Jia S 2017 Front Phys. 12 127211

    [61]

    Li Z L, Chen H X, Jin S F, Gan D, Wang W J, Guo L W, Chen X L 2016 Cryst. Growth Des. 16 1172

    [62]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806

    [63]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101

    [64]

    Wang Z J, Vergniory M G, Kushwaha S, Hirschberger M, Chulkove E V, Ernst A, Ong N P, Robert J C, Bernevig B A 2016 Phys. Rev. Lett. 117 236401

    [65]

    Brewer L, Lamoreaux R H (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) pp2675, 2676

    [66]

    Ali M N, Xiong J, Flynn S, Quinn G, Leslie S, Haldolaarachchige N, Ong N P, Tao J, Cava R J 2014 Nature 514 205

    [67]

    Okamoto H (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 3) (2nd Ed.) (Materials Park, Ohio:ASM International) p3472

    [68]

    Guan T, Lin C J, Yang C L, Shi Y G, Ren C, Li Y Q, Weng H M, Dai X, Fang Z, Yan S S, Xiong P 2015 Phys. Rev. Lett. 115 087002

    [69]

    Lin C J, Yi C J, Shi Y G, Zhang L, Zhang G M, Mller J, Li Y Q 2016 Phys. Rev. B 94 224404

    [70]

    Lehmann H W, Emmenegger F P 1969 Solid State Commun. 7 965

    [71]

    Takahashi T 1970 J. Cryst. Growth 6 319

    [72]

    Yu R, Weng H M, Fang Z, Dai X, Hu X 2015 Phys. Rev. Lett. 115 036807

    [73]

    Quintela C X, Campbell N, Shao D F, Irwin J, Harris D T, Xie L, Anderson, T J, Reiser N, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2017 APL Matter. 5 096103

    [74]

    Schoop L M, Ali M N, Straer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin P S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696

    [75]

    Ali M N, Schoop L M, Garg C, Lippmann J M, Laa E, Lotsch B, Parkin P S S 2016 Sci. Adv. 2 e1601742

    [76]

    Higashi I, Takahashi Y, Atoda T 1976 J. Cryst. Growth 33 207

    [77]

    Nakano K, Hayashi H, Imura T 1974 J. Cryst. Growth 24-25 679

    [78]

    Sirtl E, Woerner L M 1972 J. Cryst. Growth 16 215

    [79]

    Murray J L 1988 Metall. Trans. A 19 243

    [80]

    Bradlyn B, Cano J, Wang Z J, Vergnioru M G, Felser V, Cava R J, Bernevig B A 2016 Science 353 6299

    [81]

    Vogel R, Schuster H U 1980 Z. Naturforsch. 35b 114

    [82]

    Sangster J, Pelton A D 1993 J. Phase Equilib. 14 510

    [83]

    Kurnakow N S 1900 Z. Anorg. Allg. Chem. 23 439

    [84]

    Jangg G, Lihl F, Legler E 1962 Z. MetaIlkd. 53 313

    [85]

    Guerin R, Sergent M, Chaudron G 1975 CR Acad. Sci. Ser. C 281 777

    [86]

    Shekhar C, Sun Y, Kumar N, Nicklas M, Manna K, Suess V, Young O, Leermakers I, Foerster T, Schmidt M, Muechler L, Werner P, Schnelle W, Zeitler U, Yan B H, Parkin S S P, Felser C 2017 arXiv:1703.03736[cond-mat.mtrl-sci]

    [87]

    Olesinski R W, Abbaschian G J (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 2) (2nd Ed.) (Materials Park, Ohio:ASM International) pp1967, 1968

    [88]

    Olesinski R W, Kanani N, Abbaschian G J (Massalski T B E ed) 1990 Binary Alloy Phase Diagrams (Vol. 2) (2nd Ed.) (Materials Park, Ohio:ASM International) pp 1978, 1979

    [89]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Z L, Zhou Y, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Kenney-Benson C, Yang W G, Wu G, Wan X G, Shi Y G, Yang X P, Yang Z R 2017 arXiv:1710.00472[cond-mat.supr-con]

  • [1] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [2] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [3] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [4] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [5] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [6] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [7] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [8] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [9] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究. 物理学报, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [10] 徐政, 赵小如, 吴文彬, 孙学峰, 周贵恩, 李晓光, 张裕恒. 用自助熔剂法生长Bi2Sr2CaCu2Oy单晶的特点. 物理学报, 1996, 45(9): 1562-1569. doi: 10.7498/aps.45.1562
    [11] 余朝文, 何丕模, 徐亚伯, 齐仲甫, 李文铸. 单温度梯度气相法生长C70单晶. 物理学报, 1995, 44(3): 488-491. doi: 10.7498/aps.44.488
    [12] 赵立竹, 申猛燕, 後藤武生. 气相法生长N-salicylideneaniline单晶及其偏振特性. 物理学报, 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [13] 邓朝德, 邵式平, 梁宏林. 溶剂变更法生长的TGS单晶的介电和热电性能. 物理学报, 1980, 174(3): 389-391. doi: 10.7498/aps.29.389
    [14] 闵乃本, 洪静芬, 孙政民, 杨永顺. 直拉法LiNbO3单晶体中的旋转生长条纹. 物理学报, 1981, 30(12): 1672-1675. doi: 10.7498/aps.30.1672
    [15] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [16] 刘寄浙, 金通政, 刘公强. GGG单晶的助熔生长与成核温度的确定. 物理学报, 1980, 169(1): 117-121. doi: 10.7498/aps.29.117
    [17] 葛传珍, 徐秀英, 冯端. 直拉法生长的YAG单晶体中组分过冷引起的针状应力区和位错. 物理学报, 1981, 30(2): 218-223. doi: 10.7498/aps.30.218
    [18] 葛传珍, 凌黎, 王牧, 牛钟明, 闵乃本, 冯端. 直拉法生长的GGG和YAG单晶体中螺型位错的双折射像. 物理学报, 1986, 35(2): 188-195. doi: 10.7498/aps.35.188
    [19] 葛传珍, 徐秀英, 冯端. 直拉法生长Y3Al5O12(YAG)单晶体中的位错和包裹物. 物理学报, 1982, 31(3): 415-418. doi: 10.7498/aps.31.415
    [20] 闵乃本, 洪静芬, 冯端. 直拉法生长的LiNbO3单晶体中的生长条纹和铁电畴组态间的对应关系. 物理学报, 1982, 31(1): 104-108. doi: 10.7498/aps.31.104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  511
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-24
  • 修回日期:  2018-05-08
  • 刊出日期:  2018-06-20

拓扑半金属材料的单晶生长研究进展

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 中国科学院大学物理科学学院, 北京 100049
  • 通信作者: 石友国, ygshi@iphy.ac.cn
    基金项目: 

    国家重点研发计划(批准号:2017YFA0302901,2016YFA0300604)、国家自然科学基金(批准号:11774399,11474330)、中国科学院战略性先导科技专项(B类)(批准号:XDB07020100)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-SLH043)资助的课题.

摘要: 拓扑半金属已经成为凝聚态物理研究的一个热点领域,这类材料的单晶生长是研究其物理性质的基础.目前,对于拓扑材料的研究已经形成了以理论计算为指引,对潜在的拓扑材料进行单晶制备,并结合物性测量对理论预言加以验证的科研合作方式.在这种科研团队合作中,单晶生长起衔接作用.本文介绍了近年来拓扑半金属材料单晶生长方法,涵盖了拓扑Dirac半金属、Weyl半金属、Node-Line半金属以及其他打破常规分类的拓扑绝缘体及拓扑半金属材料等,并针对各个材料,详细总结了其生长方法.

English Abstract

参考文献 (89)

目录

    /

    返回文章
    返回