搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光聚焦扰动作用下高超声速边界层稳定性实验研究

刘小林 易仕和 牛海波 陆小革

激光聚焦扰动作用下高超声速边界层稳定性实验研究

刘小林, 易仕和, 牛海波, 陆小革
PDF
导出引用
  • 在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.
      通信作者: 刘小林, liuxiaolin09@nudt.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401200)、国家重大科研仪器研制项目(批准号:11527802)和国家自然科学基金重大研究计划(批准号:91752102)资助的课题.
    [1]

    Morkovin M V, Reshotko E, Herbert T 1994 Bull. Am. Phys. Soc. 39 1882

    [2]

    Mack L M 1975 AIAA J. 13 278

    [3]

    Mack L M 1984 AGARD Rep. 709

    [4]

    Malik M 1989 AIAA J. 27 1487

    [5]

    Demetriades A 1974 7th Fluid and PlasmaDynamics Conference Palo Alto, CA, USA, June 17-19, 1974 p535

    [6]

    Kendall J M 1974 12th Aerospace Sciences Meeting Washington, DC, USA, January 30-February 1, 1974 p133

    [7]

    Stetson K, Kimmel R 1992 30th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 6-9, 1992 p737

    [8]

    Haddad O M, Corke T C 1998 J. Fluids Mech. 368 1

    [9]

    Zhong X L, Ma Y B 2006 J. Fluids Mech. 556 55

    [10]

    Wang X W, Zhong X L 2009 Phys. Fluids 21 044101

    [11]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [12]

    Balakumar P, Chou A 2018 AIAA J. 56 193

    [13]

    Cao W, Zhou H 2004 Sci. China Ser. G 34 203 (in Chinese) [曹伟, 周恒 2008 中国科学 G 辑 34 203]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Zhang Y D, Fu D X, Ma Y W 2008 Sci. China Ser. G 38 1246 (in Chinese) [张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学 G 辑 38 1246]

    [16]

    Kendall J M 1987 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference Honolulu, HI, USA, June 8-10, 1987 p1257

    [17]

    Kendall J M 1990 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference Seattle, WA, USA, June 18-20, 1990 p504

    [18]

    Maslov A A, Shiplyuk A N, Sidorenko A A, Arnal D 2001 J. Fluids Mech. 426 73

    [19]

    Schmisseur J D, Schneider S P, Collicott S H 2002 Exp. Fluids 33 225

    [20]

    Chou A, Balakumar P, Schneider S P 2017 AIAA J. 55 799

    [21]

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701 (in Chinese)[刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701]

    [22]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [23]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [24]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [25]

    Bountin D, Shiplyuk A, Maslov A 2008 J. Fluids Mech. 611 427

    [26]

    Cebeci T, Shao J P, Chen H H, Chang K C 2004 The Preferred Approach for Calculating Transition by Stability Theory (Toulouse: International Conference on Boundary and Interior Layers)

    [27]

    Crouch J D, Kosorygin V S, Ng L L 2006 The Sixth IUTAM Symposium on Laminar-Turbulent Transition Bangalore India, December 13-17, 2004 p37

  • [1]

    Morkovin M V, Reshotko E, Herbert T 1994 Bull. Am. Phys. Soc. 39 1882

    [2]

    Mack L M 1975 AIAA J. 13 278

    [3]

    Mack L M 1984 AGARD Rep. 709

    [4]

    Malik M 1989 AIAA J. 27 1487

    [5]

    Demetriades A 1974 7th Fluid and PlasmaDynamics Conference Palo Alto, CA, USA, June 17-19, 1974 p535

    [6]

    Kendall J M 1974 12th Aerospace Sciences Meeting Washington, DC, USA, January 30-February 1, 1974 p133

    [7]

    Stetson K, Kimmel R 1992 30th Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 6-9, 1992 p737

    [8]

    Haddad O M, Corke T C 1998 J. Fluids Mech. 368 1

    [9]

    Zhong X L, Ma Y B 2006 J. Fluids Mech. 556 55

    [10]

    Wang X W, Zhong X L 2009 Phys. Fluids 21 044101

    [11]

    Balakumar P, Kegerise M A 2015 AIAA J. 53 2097

    [12]

    Balakumar P, Chou A 2018 AIAA J. 56 193

    [13]

    Cao W, Zhou H 2004 Sci. China Ser. G 34 203 (in Chinese) [曹伟, 周恒 2008 中国科学 G 辑 34 203]

    [14]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese) [陆昌根, 沈露予 2016 物理学报 65 194701]

    [15]

    Zhang Y D, Fu D X, Ma Y W 2008 Sci. China Ser. G 38 1246 (in Chinese) [张玉东, 傅德薰, 马延文, 李新亮 2008 中国科学 G 辑 38 1246]

    [16]

    Kendall J M 1987 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference Honolulu, HI, USA, June 8-10, 1987 p1257

    [17]

    Kendall J M 1990 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference Seattle, WA, USA, June 18-20, 1990 p504

    [18]

    Maslov A A, Shiplyuk A N, Sidorenko A A, Arnal D 2001 J. Fluids Mech. 426 73

    [19]

    Schmisseur J D, Schneider S P, Collicott S H 2002 Exp. Fluids 33 225

    [20]

    Chou A, Balakumar P, Schneider S P 2017 AIAA J. 55 799

    [21]

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701 (in Chinese)[刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701]

    [22]

    Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687

    [23]

    Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406

    [24]

    Schneider S P, Haven C E 1995 AIAA J. 33 688

    [25]

    Bountin D, Shiplyuk A, Maslov A 2008 J. Fluids Mech. 611 427

    [26]

    Cebeci T, Shao J P, Chen H H, Chang K C 2004 The Preferred Approach for Calculating Transition by Stability Theory (Toulouse: International Conference on Boundary and Interior Layers)

    [27]

    Crouch J D, Kosorygin V S, Ng L L 2006 The Sixth IUTAM Symposium on Laminar-Turbulent Transition Bangalore India, December 13-17, 2004 p37

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1552
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-07-09
  • 刊出日期:  2018-11-05

激光聚焦扰动作用下高超声速边界层稳定性实验研究

    基金项目: 

    国家重点研发计划(批准号:2016YFA0401200)、国家重大科研仪器研制项目(批准号:11527802)和国家自然科学基金重大研究计划(批准号:91752102)资助的课题.

摘要: 在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回