搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器

郝倩倩 宗梦雨 张振 黄浩 张峰 刘杰 刘丹华 苏良碧 张晗

引用本文:
Citation:

基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器

郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗

Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser

Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han
PDF
HTML
导出引用
  • 铋纳米片作为一种新型二维材料, 具有合适的带隙、较高的载流子迁移率和较好的室温稳定性, 加上优异的电学和光学特性, 是实现中红外脉冲激光的有效调制器件. 中红外单晶光纤兼备晶体和光纤的优势, 是实现高功率激光的首选增益介质. 本文采用超声波法成功制备了铋纳米片可饱和吸收体, 并首次将其用于二极管抽运Er:CaF2单晶光纤中红外被动调Q脉冲激光器中. 在吸收抽运功率为1.52 W时, 获得平均输出功率为190 mW的脉冲激光, 最窄脉冲宽度为607 ns, 重复频率为58.51 kHz, 对应的单脉冲能量和峰值功率分别为3.25 μJ和5.35 W. 结果表明, 使用铋纳米片作为可饱和吸收体, 是实现结构紧凑的小型中红外单晶光纤脉冲激光的有效技术途径.
    As a new two-dimensional material, bismuth nanosheet is an effective modulator for realizing a mid-infrared pulsed laser, which benefits from its suitable band gap, higher carrier mobility and better room temperature stability, as well as its excellent electrical and optical properties. The mid-infrared single-crystal fiber is a preferable gain medium for high-power laser because of its advantages of both crystal and fiber. In this paper, a bismuth nanosheet saturable absorber is successfully prepared by the ultrasonic method and used for the first time in a diode-pumped Er:CaF2 single-crystal fiber mid-infrared passively Q-switching pulsed laser. A compact concave planar linear resonator is designed to study the Q-switching Er:CaF2 single-crystal fiber laser with bismuth nanosheets serving as saturable absorbers. The pump source is a fiber-coupled semiconductor laser with a core diameter of 105 μm, a numerical aperture of 0.22, and a central emission wavelength of 976 nm. The pump light is focused onto the front end of the gain medium through a coupled collimating system with a coupling ratio of 1∶2. The gain medium is a 4 at.% Er3+:CaF2 single-crystal fiber grown by the temperature gradient method, and this fiber has two polished but not coated ends, a diameter of 1.9 mm, and a length of 10 mm. To reduce the thermal effect, the single-crystal fiber is tightly wrapped with indium foil and mounted on a copper block with a constant temperature of 12 ℃. The input mirror has a high reflection coating at 2.7–2.95 μm and an antireflection coating at 974 nm, with a curvature radius of 100 mm. A group of partially transmitting plane mirrors are used as output couplers, respectively, with transmittances of 1%, 3%, and 5% at 2.7–2.95 μm. The total length of the resonant cavity is 26 mm. By inserting the bismuth nanosheet into the resonator and carefully adjusting its position and angle, a stable mid-infrared Q-switching laser is obtained. At the absorbed pump power of 1.52 W, a pulsed laser with an average output power of 190 mW is obtained for an output mirror with a transmittance of 3%. The shortest pulse width is 607 ns, the repetition frequency is 58.51 kHz, and the corresponding single pulse energy and peak power are 3.25 μJ and 5.35 W, respectively.
      通信作者: 刘杰, jieliu@sdnu.edu.cn ; 刘丹华, liudanhua@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974220, 61635012, 61675135)资助的课题
      Corresponding author: Liu Jie, jieliu@sdnu.edu.cn ; Liu Dan-Hua, liudanhua@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974220, 61635012, 61675135)
    [1]

    Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Yasuhara R 2019 App. Phys. Express 12 022002Google Scholar

    [2]

    Sun Y, Tu C, You Z, Liao J, Wang Y, Xu J 2018 Opt. Mater. Express 8 165

    [3]

    Yang Y, Nie H, Zhang B, Yang K, Zhang P, Sun X, Yan B, Li G, Wang Y, Liu J, Shi B, Wang R, Hang Y, He J 2018 App. Phys. Express 11 112704Google Scholar

    [4]

    Yan Z, Li T, Zhao S, Yang K, Li D, Li G, Zhang S, Gao Z 2018 Opt. Laser Technol. 100 261Google Scholar

    [5]

    Guan X, Wang J, Zhang Y, Xu B, Luo Z, Xu H, Cai Z, Xu X, Zhang J, Xu J 2018 Photonics Res. 6 830Google Scholar

    [6]

    Fan M, Li T, Zhao S, Li G, Ma H, Gao X, Kränkel C, Huber G 2016 Opt. Lett. 41 540Google Scholar

    [7]

    Burrus C A, Stone J 1975 Appl. Phys. Lett. 26 318Google Scholar

    [8]

    de Camargo A S S, Andreeta M R B, Hernandes A C, Nunes L A O 2006 Opt. Mater. 28 551Google Scholar

    [9]

    Markovic V, Rohrbacher A, Hofmann P, Pallmann W, Pierrot S, Resan B 2015 Opt. Express 23 25883Google Scholar

    [10]

    Li Y, Miller K, Johnson E G, Nie C D, Bera S, Harrington J A, Shori R 2016 Opt. Express 24 9751Google Scholar

    [11]

    Wang S, Tang F, Liu J, Qian X, Wu Q, Wu A, Liu J, Mei B, Su L 2019 Opt. Mater. 95 109255Google Scholar

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [13]

    Sun Z, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [14]

    Wang J, Mu X, Sun M, Mu T 2019 Appl. Mater. Today 16 1Google Scholar

    [15]

    孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强 2019 物理学报 68 104207Google Scholar

    Sun R, Chen C, Ling W J, Zhang Y N, Kang C P, Xu Q 2019 Acta Phys. Sin. 68 104207Google Scholar

    [16]

    Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y, Zhang C, He J 2018 ACS Nano 12 11376Google Scholar

    [17]

    Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y, Mei L, Tonelli M, Wang J 2017 Opt. Lett. 42 547Google Scholar

    [18]

    Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S, He J 2018 Nanoscale 10 20171Google Scholar

    [19]

    Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z, Chen X 2019 Opt. Laser Technol. 119 105639Google Scholar

    [20]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [21]

    Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar

    [22]

    Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J, Xu X, Su L 2018 Opt. Commun. 406 158Google Scholar

    [23]

    Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J, Su L 2016 Opt. Express 24 30289Google Scholar

    [24]

    Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H, Zhang B, He J, Bian J, Zheng L, Su L, Xu J 2017 Photonics Res. 5 461Google Scholar

    [25]

    Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C, He G, Lin Y, Liu H, He J, Lee C 2018 IEEE Photonics J. 10 1504110Google Scholar

    [26]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [27]

    Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F 2019 Opt. Express 27 8727Google Scholar

    [28]

    Liu W, Liu M, Chen X, Shen T, Lei M, Guo J, Deng H, Zhang W, Dai C, Zhang X, Wei Z 2020 Commun. Phys. 3 15Google Scholar

    [29]

    Hao Q, Liu J, Zhang Z, Zhang B, Zhang F, Yang J, Liu J, Su L, Zhang H 2019 Appl. Phys. Express 12 085506Google Scholar

    [30]

    Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T, Zhang S, Xu J, Hang Y, He J 2017 Opt. Lett. 42 699Google Scholar

    [31]

    Yang Q, Zhang F, Zhang N, Zhang H 2019 Opt. Mater. Express 9 1795Google Scholar

    [32]

    Feng X, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Ning T, Liu J, Su L, Zhang H 2019 Appl. Opt. 58 6545Google Scholar

    [33]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photon. Rev. 12 1870012Google Scholar

    [34]

    Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H, Su L 2018 Photonics Res. 6 762Google Scholar

    [35]

    Feng X, Hao Q, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Liu J, Su L, Zhang H 2020 Opt. Laser Technol. 127 106152Google Scholar

    [36]

    Wang Y, Wang S, Wang J, Zhang Z, Zhang Z, Liu R, Zu Y, Liu J, Su L 2020 Opt. Express 28 6684Google Scholar

    [37]

    Li C, Liu J, Jiang S, Xu S, Ma W, Wang J, Xu X, Su L 2016 Opt. Mater. Express 6 1570Google Scholar

  • 图 1  Er:CaF2单晶光纤连续激光和Bi-NSs被动调Q激光装置图

    Fig. 1.  Schematic of Er:CaF2 single-crystal fiber continuous laser and Bi-NSs passively Q-switched laser.

    图 2  连续激光输出功率随吸收抽运功率的变化

    Fig. 2.  Continuous-wave (CW) output power versus the absorbed pump power.

    图 3  Er:CaF2单晶光纤连续激光光谱

    Fig. 3.  Spectra of Er:CaF2 single-crystal fiber continuous laser.

    图 4  Q激光平均输出功率随吸收抽运功率的变化

    Fig. 4.  Q-switched output power versus the absorbed pump power.

    图 5  Er:CaF2单晶光纤Bi-NSs被动调Q激光(a)脉冲宽度、(b)重复频率、(c)单脉冲能量、(d)峰值功率随吸收抽运光的变化

    Fig. 5.  (a) Pulse duration, (b) repetition rate, (c) single pulse energy, and (d) peak power versus the absorbed pump power.

    图 6  Er:CaF2单晶光纤Bi-NSs被动调Q激光脉冲序列

    Fig. 6.  Bi-NSs Q-switched pulse trains of Er:CaF2 single-crystal fiber laser.

    表 1  吸收抽运功率1.52 W时, 不同透过率下的调Q激光特性

    Table 1.  Q-switched laser characteristics at the absorption pump power of 1.52 W

    透过
    最大输出
    功率/mW
    脉冲宽度/ns重复频率/kHz单脉冲
    能量/μJ
    峰值功率/W
    1%12065055.362.163.33
    3%19060758.513.255.35
    5%8187836.542.222.53
    下载: 导出CSV

    表 2  掺铒氟化物中红外被动调Q激光特性比较

    Table 2.  Comparison of Er-doped mid-infrared passively Q-switched laser

    增益介质吸收体脉冲宽度/ns最大输出功率/mW重复频率/kHz文献
    Er:CaF2晶体Graphene132417262.7 [37]
    Er:CaF2晶体Black phosphorus954.817841.93[22]
    Er:CaF2-SrF2晶体Ti3C2Tx81428645.3[29]
    Er:SrF2晶体Bi-NSs98022656.20[34]
    Er:CaF2单晶光纤Bi-NSs60719058.51本文工作
    下载: 导出CSV
  • [1]

    Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Yasuhara R 2019 App. Phys. Express 12 022002Google Scholar

    [2]

    Sun Y, Tu C, You Z, Liao J, Wang Y, Xu J 2018 Opt. Mater. Express 8 165

    [3]

    Yang Y, Nie H, Zhang B, Yang K, Zhang P, Sun X, Yan B, Li G, Wang Y, Liu J, Shi B, Wang R, Hang Y, He J 2018 App. Phys. Express 11 112704Google Scholar

    [4]

    Yan Z, Li T, Zhao S, Yang K, Li D, Li G, Zhang S, Gao Z 2018 Opt. Laser Technol. 100 261Google Scholar

    [5]

    Guan X, Wang J, Zhang Y, Xu B, Luo Z, Xu H, Cai Z, Xu X, Zhang J, Xu J 2018 Photonics Res. 6 830Google Scholar

    [6]

    Fan M, Li T, Zhao S, Li G, Ma H, Gao X, Kränkel C, Huber G 2016 Opt. Lett. 41 540Google Scholar

    [7]

    Burrus C A, Stone J 1975 Appl. Phys. Lett. 26 318Google Scholar

    [8]

    de Camargo A S S, Andreeta M R B, Hernandes A C, Nunes L A O 2006 Opt. Mater. 28 551Google Scholar

    [9]

    Markovic V, Rohrbacher A, Hofmann P, Pallmann W, Pierrot S, Resan B 2015 Opt. Express 23 25883Google Scholar

    [10]

    Li Y, Miller K, Johnson E G, Nie C D, Bera S, Harrington J A, Shori R 2016 Opt. Express 24 9751Google Scholar

    [11]

    Wang S, Tang F, Liu J, Qian X, Wu Q, Wu A, Liu J, Mei B, Su L 2019 Opt. Mater. 95 109255Google Scholar

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [13]

    Sun Z, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [14]

    Wang J, Mu X, Sun M, Mu T 2019 Appl. Mater. Today 16 1Google Scholar

    [15]

    孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强 2019 物理学报 68 104207Google Scholar

    Sun R, Chen C, Ling W J, Zhang Y N, Kang C P, Xu Q 2019 Acta Phys. Sin. 68 104207Google Scholar

    [16]

    Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y, Zhang C, He J 2018 ACS Nano 12 11376Google Scholar

    [17]

    Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y, Mei L, Tonelli M, Wang J 2017 Opt. Lett. 42 547Google Scholar

    [18]

    Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S, He J 2018 Nanoscale 10 20171Google Scholar

    [19]

    Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z, Chen X 2019 Opt. Laser Technol. 119 105639Google Scholar

    [20]

    Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar

    [21]

    Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar

    [22]

    Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J, Xu X, Su L 2018 Opt. Commun. 406 158Google Scholar

    [23]

    Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J, Su L 2016 Opt. Express 24 30289Google Scholar

    [24]

    Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H, Zhang B, He J, Bian J, Zheng L, Su L, Xu J 2017 Photonics Res. 5 461Google Scholar

    [25]

    Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C, He G, Lin Y, Liu H, He J, Lee C 2018 IEEE Photonics J. 10 1504110Google Scholar

    [26]

    王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar

    Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar

    [27]

    Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F 2019 Opt. Express 27 8727Google Scholar

    [28]

    Liu W, Liu M, Chen X, Shen T, Lei M, Guo J, Deng H, Zhang W, Dai C, Zhang X, Wei Z 2020 Commun. Phys. 3 15Google Scholar

    [29]

    Hao Q, Liu J, Zhang Z, Zhang B, Zhang F, Yang J, Liu J, Su L, Zhang H 2019 Appl. Phys. Express 12 085506Google Scholar

    [30]

    Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T, Zhang S, Xu J, Hang Y, He J 2017 Opt. Lett. 42 699Google Scholar

    [31]

    Yang Q, Zhang F, Zhang N, Zhang H 2019 Opt. Mater. Express 9 1795Google Scholar

    [32]

    Feng X, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Ning T, Liu J, Su L, Zhang H 2019 Appl. Opt. 58 6545Google Scholar

    [33]

    Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photon. Rev. 12 1870012Google Scholar

    [34]

    Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H, Su L 2018 Photonics Res. 6 762Google Scholar

    [35]

    Feng X, Hao Q, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Liu J, Su L, Zhang H 2020 Opt. Laser Technol. 127 106152Google Scholar

    [36]

    Wang Y, Wang S, Wang J, Zhang Z, Zhang Z, Liu R, Zu Y, Liu J, Su L 2020 Opt. Express 28 6684Google Scholar

    [37]

    Li C, Liu J, Jiang S, Xu S, Ma W, Wang J, Xu X, Su L 2016 Opt. Mater. Express 6 1570Google Scholar

计量
  • 文章访问数:  6683
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-03-14
  • 上网日期:  2020-03-23
  • 刊出日期:  2020-09-20

/

返回文章
返回