搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物阻抗谱的细胞电学特性研究

姚佳烽 万建芬 杨璐 刘凯 陈柏 吴洪涛

引用本文:
Citation:

基于生物阻抗谱的细胞电学特性研究

姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛

Electrical characteristics of cells with electrical impedance spectroscopy

Yao Jia-Feng, Wan Jian-Fen, Yang Lu, Liu Kai, Chen Bai, Wu Hong-Tao
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 生物阻抗谱是一种非侵入式、免标记、能够定量分析的检测技术, 将其应用于生物细胞及组织的生理、病理分析中具有很大优势. 本文采用数值仿真的方法研究了单细胞电学特性与其结构之间的关系, 并通过实验进行了验证. 根据细胞的生理特征, 依据细胞的双壳模型与单壳模型理论分别建立了不同种类细胞的电学模型, 研究了细胞种类、细胞膜、细胞核对细胞电学特性的影响. 数值分析结果表明: 1)细胞结构尺寸的变化引起细胞电学特性的改变, 因此, 依据细胞电学特性能够准确实现细胞分类; 2)柯尔-柯尔(Cole-Cole)图上高频与低频的两个半圆弧分别是由细胞质或细胞外液的离子极化、细胞膜与细胞外液之间的界面极化引起的; 3)细胞核大小对测量阻抗的影响主要在低频段, 是由细胞核与细胞内液的界面极化引起的, 当存在细胞膜且当细胞核的核质比小于0.25时可忽略其影响. 为验证仿真结果, 对20%不同活性的酵母菌进行了实验. 实验结果表明, 运用本文建立的细胞电学模型, 可以准确检测细胞的不同活性. 该方法对实现细胞的精准电阻抗检测提供了理论依据, 具有重要的应用价值.
    Bioelectrical impedance spectroscopy is a noninvasive, label-free and quantitative detection technology, which has great advantages in the physiological and pathological analysis of biological cells and tissues. In this paper, the relationship between the electrical properties of a single cell and its structure is studied by numerical simulation. Moreover, experiments are conducted to verify the simulation results. For simulation, three single cell models are used to express its structure. Among of the three models, No Shell Model (NS) is proposed in this paper to study the influence of cell membrane on bioelectrical impedance spectroscopy. In addition, the effects of cell type, cell membrane and cell nucleus on its electrical properties are studied by simulation based on Single Shell Model (SS) and Two Shell Model (TS). The simulation results show that: 1) the electrical characteristics of cells can reflect its structure, therefore, the cell type can be accurately distinguished by its electrical characteristics; 2) the high frequency part of the Cole-Cole Plot is caused by ionic polarization of cytoplasm or extracellular fluid, and the low frequency part of the Cole-Cole Plot is caused by interface polarization between cell membrane and the extracellular fluid; 3) the influence of cell nucleus size on impedance measurement is mainly in the low frequency range, which is caused by the polarization of the interface between cell nucleus and intracellular fluid, and when the nucleocytoplasmic ratio is less than 0.25, the effect of nuclear size on impedance analysis could be ignored. Finally, an experiment was conducted on 20% yeasts suspension with different activity to verify the simulation results. It is known that the cell membranes of dead yeasts are destroyed, however, living yeasts have completed cell structures. The structure difference between living and dead yeast is distinguished by electrical impedance spectroscopy through numerical simulation. The experimental results are consistent with the simulation results, which verifies the fact that the high frequency part of the Cole-Cole Plot is caused by ionic polarization of cytoplasm or extracellular fluid, and the low frequency part of the Cole-Cole Plot is caused by interface polarization between cell membrane and the extracellular fluid.
      通信作者: 刘凯, liukai@nuaa.edu.cn
      Corresponding author: Liu Kai, liukai@nuaa.edu.cn
    [1]

    Pierga J Y, Bonneton C, Vincent-Salomon A, Cremoux P D, Magdelénat H 2004 Clin. Cancer Res. 10 1392Google Scholar

    [2]

    Haba R, Miki H, Kobayashi S, Ohmori M 1993 Cancer 72 3258Google Scholar

    [3]

    Kern D H, Drogemuller C R, Kennedy M C, Hildebrand-Zanki S U, Sondak V K 1985 Cancer Res. 45 5436

    [4]

    Bera T K, Nagaraju J, Lubineau G 2016 J. Visualization 19 691Google Scholar

    [5]

    郭各朴, 宿慧丹, 丁鹤平, 马青玉 2017 物理学报 66 164301Google Scholar

    Guo G P, Su H D, Ding H P, Ma Q Y 2017 Acta Phys. Sin. 66 164301Google Scholar

    [6]

    Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J 2016 Biosens. Bioelectron. 77 824Google Scholar

    [7]

    Heileman K, Daoud J, Tabrizian M 2013 Biosens. Bioelectron. 49 348Google Scholar

    [8]

    Hodgkin A L, Huxley A F 1989 Bull. Math. Biol. 52 25

    [9]

    Kanai H, Sakamoto K, Haeno M 1983 J. Microwave Power 18 233Google Scholar

    [10]

    方云, 汤治元, 张倩, 赵鑫, 马青 2014 生物医学工程学杂志 5 1070Google Scholar

    Fang Y, Tang Z Y, Zhang Q, Zhao X, Ma Q 2014 J. Biomed. Eng. 5 1070Google Scholar

    [11]

    王威, 董秀珍, 付峰, 刘蒙, 杨鹏飞, 史学涛, 刘锐岗 2010 医疗卫生装备 31 20Google Scholar

    Wang W, Dong X Z, Fu F, Liu M, Yang P F, Shi X T 2010 Chin. Med. Equip. J. 31 20Google Scholar

    [12]

    Amin N, Rayhan S, Anik A A, Jameel R 2016 Proceeding of the Second International Conference on Research in Computational Intelligence and Communication Networks Kolkata, India, September 23–25, 2016 p147

    [13]

    Sun T, Bernabini C, Morgan H 2010 Langmuir 26 3821Google Scholar

    [14]

    Guo X, Zhu R, Zong X 2015 Analyst 140 156Google Scholar

    [15]

    Zhu Z, Xu X, Lei F, Pan D, Huang Q A 2016 Sens. Actuators, 235 515Google Scholar

    [16]

    Asami K, Takahashi Y, Takashima S 1989 Biochim. Biophys. Acta 1010 49Google Scholar

    [17]

    Irimajiri A, Doida Y, Hanai T, Inouye A 1978 J. Membr. Biol. 38 209Google Scholar

    [18]

    Hanai T, Asami K, Koizumi N 2005 Phys. Rev. Lett. 57 297

    [19]

    Joshi R P, Hu Q, Schoenbach K H 2004 IEEE Trans. Plasma Sci. 32 1677Google Scholar

    [20]

    Woolley A T, Hadley D, Landre P, de Mello A J, Mathies R A, Northrup M A 1996 Anal. Chem. 68 4081Google Scholar

    [21]

    姚佳烽, 姜祝鹏, 赵桐, 王昊, 陈柏, 吴洪涛 2019 分析化学 47 62

    Yao J F, Jiang Z P, Zhao T, Wang H, Chen B, Wu H T 2019 Anal. Chem. 47 62

    [22]

    Asami K 2002 J. Non-Cryst. Solids 305 0

  • 图 1  仿真模型 (a)−(c)细胞模型; (d), (e)仿真区域模型

    Fig. 1.  Simulation model (a)−(c) Model of cell; (d), (e) model of simulation area.

    图 2  不同细胞的仿真结果及Cole-Cole Plot (a)不同细胞在不同频率下的仿真结果; (b)不同细胞的Cole-Cole Plot

    Fig. 2.  Simulation results of different cells and Cole-Cole Plot: (a) Simulation results of different frequencies of different cells; (b) Cole-Cole Plot of different cells.

    图 3  无核细胞在有无膜下的仿真结果 (a)不同频率下无核细胞的仿真结果; (b)仿真结果对应的Cole-Cole Plot

    Fig. 3.  Simulation results of no-nuclear cells with or without membrane: (a) Simulation results of non-nucleated cells with different frequencies; (b) the Cole-Cole Plot corresponding to the simulation results.

    图 4  不同核径细胞的仿真结果 (a)不同频率下的仿真结果; (b), (c)相应的Cole-Cole图

    Fig. 4.  Simulation results of cells with different nuclear radius: (a) Simulation results of cells at different frequencies; (b), (c) Cole-Cole Plot of different nuclear radius.

    图 5  实验设备

    Fig. 5.  Experimental set-up.

    图 6  实验图 (a)死活酵母菌实物与模型图; (b)20%死活酵母菌Cole-Cole图

    Fig. 6.  Experiment: (a) Object and model of dead and alive yeast; (b) Cole-Cole Plot of 20% dead and alive yeast.

    表 1  正常B细胞及病变B细胞的仿真参数

    Table 1.  Simulation parameters of normal and malignant (farage) onsillar B-cells[19].

    参数正常细胞癌细胞
    导电率σ/S·m–1环境0.60.6
    细胞膜5.6 × 10–59.1 × 10–6
    细胞质1.310.48
    核膜1.11 × 10–24.4 × 10–3
    核质2.041.07
    相对介电常数环境8080
    细胞膜12.89.8
    细胞质6060
    核膜10660.3
    核质120120
    几何参数/μm仿真区域(L × L)20 × 2020 × 20
    电极$ (l) $2 × 42 × 4
    细胞半径(R1)3.35.2
    细胞核半径(R2)2.84.4
    细胞膜厚(d1)0.0070.007
    核膜厚(d2)0.040.04
    下载: 导出CSV
  • [1]

    Pierga J Y, Bonneton C, Vincent-Salomon A, Cremoux P D, Magdelénat H 2004 Clin. Cancer Res. 10 1392Google Scholar

    [2]

    Haba R, Miki H, Kobayashi S, Ohmori M 1993 Cancer 72 3258Google Scholar

    [3]

    Kern D H, Drogemuller C R, Kennedy M C, Hildebrand-Zanki S U, Sondak V K 1985 Cancer Res. 45 5436

    [4]

    Bera T K, Nagaraju J, Lubineau G 2016 J. Visualization 19 691Google Scholar

    [5]

    郭各朴, 宿慧丹, 丁鹤平, 马青玉 2017 物理学报 66 164301Google Scholar

    Guo G P, Su H D, Ding H P, Ma Q Y 2017 Acta Phys. Sin. 66 164301Google Scholar

    [6]

    Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J 2016 Biosens. Bioelectron. 77 824Google Scholar

    [7]

    Heileman K, Daoud J, Tabrizian M 2013 Biosens. Bioelectron. 49 348Google Scholar

    [8]

    Hodgkin A L, Huxley A F 1989 Bull. Math. Biol. 52 25

    [9]

    Kanai H, Sakamoto K, Haeno M 1983 J. Microwave Power 18 233Google Scholar

    [10]

    方云, 汤治元, 张倩, 赵鑫, 马青 2014 生物医学工程学杂志 5 1070Google Scholar

    Fang Y, Tang Z Y, Zhang Q, Zhao X, Ma Q 2014 J. Biomed. Eng. 5 1070Google Scholar

    [11]

    王威, 董秀珍, 付峰, 刘蒙, 杨鹏飞, 史学涛, 刘锐岗 2010 医疗卫生装备 31 20Google Scholar

    Wang W, Dong X Z, Fu F, Liu M, Yang P F, Shi X T 2010 Chin. Med. Equip. J. 31 20Google Scholar

    [12]

    Amin N, Rayhan S, Anik A A, Jameel R 2016 Proceeding of the Second International Conference on Research in Computational Intelligence and Communication Networks Kolkata, India, September 23–25, 2016 p147

    [13]

    Sun T, Bernabini C, Morgan H 2010 Langmuir 26 3821Google Scholar

    [14]

    Guo X, Zhu R, Zong X 2015 Analyst 140 156Google Scholar

    [15]

    Zhu Z, Xu X, Lei F, Pan D, Huang Q A 2016 Sens. Actuators, 235 515Google Scholar

    [16]

    Asami K, Takahashi Y, Takashima S 1989 Biochim. Biophys. Acta 1010 49Google Scholar

    [17]

    Irimajiri A, Doida Y, Hanai T, Inouye A 1978 J. Membr. Biol. 38 209Google Scholar

    [18]

    Hanai T, Asami K, Koizumi N 2005 Phys. Rev. Lett. 57 297

    [19]

    Joshi R P, Hu Q, Schoenbach K H 2004 IEEE Trans. Plasma Sci. 32 1677Google Scholar

    [20]

    Woolley A T, Hadley D, Landre P, de Mello A J, Mathies R A, Northrup M A 1996 Anal. Chem. 68 4081Google Scholar

    [21]

    姚佳烽, 姜祝鹏, 赵桐, 王昊, 陈柏, 吴洪涛 2019 分析化学 47 62

    Yao J F, Jiang Z P, Zhao T, Wang H, Chen B, Wu H T 2019 Anal. Chem. 47 62

    [22]

    Asami K 2002 J. Non-Cryst. Solids 305 0

  • [1] 张小丽, 殷秋鹏, 李果, 姚曦, 丁礼磊. 非线性磁电层合材料的对称等效电路理论及数值仿真分析. 物理学报, 2024, 73(23): 237501. doi: 10.7498/aps.73.20240934
    [2] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [3] 刘圣龙, 杨璐, 朱程君, 刘凯, 韩伟, 姚佳烽. 基于生物阻抗谱的细胞悬浮液浓度识别方法研究. 物理学报, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [4] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [5] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [6] 姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯. 基于生物阻抗谱的舌体肿瘤组织识别方法. 物理学报, 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [7] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [8] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [9] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [10] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真. 物理学报, 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [11] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [12] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 碲化镉薄膜太阳能电池电学特性参数分析. 物理学报, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [13] 张银, 陈明阳, 周骏, 张永康. 微结构芯大模场平顶光纤及其传输特性分析. 物理学报, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [14] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [15] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [16] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响. 物理学报, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [17] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [18] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [19] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [20] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
计量
  • 文章访问数:  13109
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-05-17
  • 上网日期:  2020-05-20
  • 刊出日期:  2020-08-20

/

返回文章
返回