搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯乙炔分子电子激发态超快动力学研究

向梅 凌丰姿 邓绪兰 魏洁 布玛丽亚∙阿布力米提 张冰

引用本文:
Citation:

苯乙炔分子电子激发态超快动力学研究

向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰

Ultrafast dynamics of electron excited states of phenylacetylene

Xiang Mei, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Bumaliya Abulimiti, Zhang Bing
PDF
HTML
导出引用
  • 采用飞秒时间分辨质谱技术结合飞秒时间分辨光电子影像技术研究了苯乙炔分子电子激发态超快非绝热弛豫动力学. 用235 nm光作为泵浦光, 将苯乙炔分子激发到第二激发态S2, 用400 nm光探测激发态的演化过程. 时间分辨的母体离子的变化曲线用指数和高斯函数卷积得到不同的两个组分, 一个是超快衰减组分, 时间常数为116 fs, 一个是慢速组分, 时间常数为106 ps. 通过分析时间分辨的光电子影像得到光电子动能分布, 结合时间分辨光电子能谱数据发现, 时间常数为116 fs 的快速组分反映了S2态向S1态的内转换过程. 实验还表明S1态通过内转换被布局后向T1态的系间窜跃过程为重要的衰减通道. 本工作为苯乙炔分子S2态非绝热弛豫动力学提供了较清晰的物理图像.
    Interaction of light with matter has always been important in the field of natural science. Particularly, the ultrafast radiationless relaxation induced by UV light of molecular electronic excited states accompanied by ultrafast energy transfer plays an important role in the natural photophysical, photochemical and biological reactions. Generally, the molecular electronic excited state can be deactivated through a variety of decay channels, including dissociation, isomerization, internal conversion, intersysterm crossing, vibrational energy redistribution, and autoionization. This complexity of relaxation channels brings about a wide variety of deactivation mechanisms. The ultrafast nonadibatic relaxation dynamics of the excited state of phenylacetylene is studied by using femtosecond time-resolved photoelectron imaging and femtosecond time-resolved mass spectrometry. The first excited state S2 of phenylacetylene is excited by 235 nm pump light, and the excited state deactivation process is detected by 400 nm probe light. The time-dependent curves of parent ions include two exponential curves. One is the fast component with a time constant of 116 fs, and the other is the slow component with a time constant of 106 ps. The time-resolved photoelectron kinetic energy distribution is obtained from the time-resolved photoelectron images. Combined with the time-resolved photoelectron spectroscopy data, the fast component with a time constant of 116 fs is found to reflect the internal conversion process from S2 state to S1 state. The experimental results also show that S1 state is arranged by internal conversion, and the inter system jump process to T1 state is an important attenuation channel. This work provides a clearer physical picture for S1 state nonadibatic relaxation dynamics of phenylacetylene.
      通信作者: 布玛丽亚∙阿布力米提, maryam917@xjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号 21763027)、新疆区域协同创新专项(批准号: 2019E0223)、新疆天山青年计划项目(批准号: 2018Q072)、新疆高校科研计划项目(批准号: XJEDU2020Y029)、新疆师范大学“十三五”校级重点学科招标项目(批准号: 17SDKD0602)和新疆师范大学本科教学质量工程建设教学研究与改革项目(批准号: SDJG2019-27)资助的课题
      Corresponding author: Bumaliya Abulimiti, maryam917@xjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21763027), the Autonomous Regional Collaborative Innovation Project of Xinjiang, China (Grant No. 2019E0223), the Tianshan Talent Program of Xinjiang, China (Grant No. 2018Q072), the Scientific Research in Higher Education of Xinjiang, China (Grant No. XJEDU2020Y029), the “13th Five-Year” Plan for KeyDiscipline Physics Bidding Project of Xinjiang Normal University, China (Grant No. 17SDKD0602), and the Undergraduate Teaching Research and Reform Project of Xinjiang Normal University, China (Grant No. SDJG2019-27)
    [1]

    Gruijl F R D 1999 Eur. J. Cancer. 35 2003Google Scholar

    [2]

    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar

    [3]

    Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 227 4Google Scholar

    [4]

    Satzger H, Townsend D, Zgierski M Z, Patchkovskii S, Ullrich S, Stolow A 2006 P. Nati. Acad. Sci. 103 10196Google Scholar

    [5]

    Middleton C T, Harpe K D L, Su C, Law Y K, Carlos E C H, Kohler B 2009 Annu. Rev. Phys. Chem. 60 217Google Scholar

    [6]

    Zewail A H 2000 Angew. Chem. 39 2586Google Scholar

    [7]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Sci. 254 412Google Scholar

    [8]

    Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett 1 2453Google Scholar

    [9]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847Google Scholar

    [10]

    Otis C E, Knee J L, Johnson P M 1983 J. Phys. Chem. 87 2232Google Scholar

    [11]

    Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar

    [12]

    蒿巧利 2017 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Hao Q L 2007 Ph. D. Dissertation (Wuhan: Institude of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [13]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar

    [14]

    Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [15]

    Lee S H, Tang K C, Chen I C, et al. 2002 J. Phys. Chem. A 106 8979Google Scholar

    [16]

    Meisl M, Janoschek R 1986 J. Chem. Soc., Chem. Commun. 14 1066Google Scholar

    [17]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [18]

    Liu Y Z, Tang B F, Shen H, Zhang S, Zhang B 2010 Opt. Express. 18 5791Google Scholar

    [19]

    Wu G R, Hockett P, Stolow A 2011 Phys. Chem. Chem. Phys. 13 18447Google Scholar

    [20]

    刘玉柱, Gerber Thomas, Knopp Gregor 2014 物理学报 63 244208Google Scholar

    Liu Y Z, Thomas G, Gregor K 2014 Acta Phys. Sin. 63 244208Google Scholar

    [21]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555Google Scholar

    [22]

    布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰 2020 物理学报 69 103301Google Scholar

    Abulimiti B, Ling F Z, Deng X L, Wei J, Song X L, Xiang M, Zhang B 2020 Acta Phys. Sin. 69 103301Google Scholar

    [23]

    Yan Y H, Long J Y, Liu Y Z 2020 Chem. Phys. 530 110611Google Scholar

    [24]

    龙金友 2012博士学位论文(武汉: 中国科学院武汉物理与数学研究所)

    Long J Y 2012 Ph. D. Dissertation (Wuhan: Institude of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [25]

    Leopold D G, Hemley R J, Vaida V 1981 J. Chem. Phys. 75 4758Google Scholar

    [26]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

  • 图 1  235 nm泵浦、400 nm探测条件下获得的母体离子时间衰减曲线, 圆圈代表实验结果, 实线代表拟合结果

    Fig. 1.  Time-resolved total ion signals of parent ion as a function of delay time between the pump pulse at 235 nm and the probe pulse at 400 nm. The circles are the experimental results, and solid lines are the fitting results.

    图 2  从Δt = 0 fs和Δt = 163 fs的影像中提取得到的光电子动能分布, 位于D0处的箭头表示(1+2')电离机制下最大的可资用能

    Fig. 2.  Photoelectron kinetic energy distributions at Δt = 0 ps and Δt = 92 ps. The arrow at D0 indicates the maximum electron energy by two-photon absorption of probe beam at 400 nm after one-photon excitation of pump at 235 nm.

    图 3  长时间延迟的235 nm泵浦、400 nm探测条件下获得的母体离子时间衰减曲线, 圆圈代表实验结果, 实线代表拟合结果

    Fig. 3.  Time-resolved total ion signals of parent ion as a function of delay time between the pump pulse at 235 nm and the probe pulse at 400 nm. The circles are the experimental results, and solid lines are the fitting results.

    图 4  在235 nm泵浦、400 nm探测不同泵浦-探测延迟下的光电子能谱

    Fig. 4.  Photoelectron kinetic energy distributions (PKE) at different time delay observed at 235 nm pump and 400 nm probe.

  • [1]

    Gruijl F R D 1999 Eur. J. Cancer. 35 2003Google Scholar

    [2]

    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T 2003 Toxicology 189 21Google Scholar

    [3]

    Iqbal A, Stavros V G 2010 J. Phys. Chem. Lett. 1 227 4Google Scholar

    [4]

    Satzger H, Townsend D, Zgierski M Z, Patchkovskii S, Ullrich S, Stolow A 2006 P. Nati. Acad. Sci. 103 10196Google Scholar

    [5]

    Middleton C T, Harpe K D L, Su C, Law Y K, Carlos E C H, Kohler B 2009 Annu. Rev. Phys. Chem. 60 217Google Scholar

    [6]

    Zewail A H 2000 Angew. Chem. 39 2586Google Scholar

    [7]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Sci. 254 412Google Scholar

    [8]

    Gustavsson T, Improta R, Markovitsi D 2010 J. Phys. Chem. Lett 1 2453Google Scholar

    [9]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847Google Scholar

    [10]

    Otis C E, Knee J L, Johnson P M 1983 J. Phys. Chem. 87 2232Google Scholar

    [11]

    Toshinori S 2014 Bull. Chem. Soc. Jpn. 87 341Google Scholar

    [12]

    蒿巧利 2017 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Hao Q L 2007 Ph. D. Dissertation (Wuhan: Institude of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [13]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613Google Scholar

    [14]

    Suzuki Y I, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313Google Scholar

    [15]

    Lee S H, Tang K C, Chen I C, et al. 2002 J. Phys. Chem. A 106 8979Google Scholar

    [16]

    Meisl M, Janoschek R 1986 J. Chem. Soc., Chem. Commun. 14 1066Google Scholar

    [17]

    Palmer I J, Ragazos I N, Bernardi F, Olivucci M, Robb M A 1993 J. Am. Chem. Soc. 115 673Google Scholar

    [18]

    Liu Y Z, Tang B F, Shen H, Zhang S, Zhang B 2010 Opt. Express. 18 5791Google Scholar

    [19]

    Wu G R, Hockett P, Stolow A 2011 Phys. Chem. Chem. Phys. 13 18447Google Scholar

    [20]

    刘玉柱, Gerber Thomas, Knopp Gregor 2014 物理学报 63 244208Google Scholar

    Liu Y Z, Thomas G, Gregor K 2014 Acta Phys. Sin. 63 244208Google Scholar

    [21]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555Google Scholar

    [22]

    布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰 2020 物理学报 69 103301Google Scholar

    Abulimiti B, Ling F Z, Deng X L, Wei J, Song X L, Xiang M, Zhang B 2020 Acta Phys. Sin. 69 103301Google Scholar

    [23]

    Yan Y H, Long J Y, Liu Y Z 2020 Chem. Phys. 530 110611Google Scholar

    [24]

    龙金友 2012博士学位论文(武汉: 中国科学院武汉物理与数学研究所)

    Long J Y 2012 Ph. D. Dissertation (Wuhan: Institude of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [25]

    Leopold D G, Hemley R J, Vaida V 1981 J. Chem. Phys. 75 4758Google Scholar

    [26]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

  • [1] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [3] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [4] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [5] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [6] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [7] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, 2018, 67(22): 227802. doi: 10.7498/aps.67.20181334
    [8] 辛建国, 杨传路, 王美山, 马晓光. (CH3)2和(NH2)2基团修饰的齐聚苯乙炔分子电子输运性质研究. 物理学报, 2016, 65(7): 073102. doi: 10.7498/aps.65.073102
    [9] 易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业. 基于移位双光栅色散元件的X射线谱仪研制. 物理学报, 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [10] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究. 物理学报, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [11] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [12] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响. 物理学报, 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [13] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [14] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [15] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [16] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [17] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
    [18] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [19] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [20] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, 1990, 39(8): 108-114. doi: 10.7498/aps.39.108
计量
  • 文章访问数:  3902
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-09-19
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回