搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压电晕等离子体射流制备氧化钛薄膜

孔得霖 杨冰彦 何锋 韩若愚 缪劲松 宋廷鲁 欧阳吉庭

引用本文:
Citation:

大气压电晕等离子体射流制备氧化钛薄膜

孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭

Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet

Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting
PDF
HTML
导出引用
  • 大气压等离子体因具有很多独特优势从而在材料制备和表面工艺领域备受关注. 本文利用大气压针-板电晕放电等离子体射流制备氧化钛(TiO2)薄膜, 研究了电晕极性和放电参数对薄膜特性的影响. 实验测试了正负电晕等离子体射流的电学性能、发展过程和发射光谱, 并对不同条件下制备的TiO2薄膜进行了表征和分析. 结果表明: 负电晕等离子体射流制备的TiO2薄膜表面更均匀而且薄膜中钛(Ti)含量更高. 正负电晕等离子体射流制备的薄膜的结合力均优于4.7 N/cm, 表面电阻低于1010 Ω. 此外, 发现TiO2薄膜在基底表面沉积和在气相中成核存在竞争机制, 并进一步阐述了电晕放电等离子体制备薄膜的成膜机理和不同极性放电的差异. 本文结果将为大气压等离子体制备均匀、致密的功能氧化物薄膜材料提供有益参考.
    Atmospheric pressure plasma jet has received increasing attention due to its wide potential applications such as in material processing and surface modification. This paper presents the characteristics of titanium oxide (TiO2) thin films deposited by using atmospheric pressure corona plasma jet based on a needle-plate configuration. The influences of corona polarity and operating parameters on the properties of TiO2 films are investigated. The characteristics of positive and negative corona discharge, the developing process and the emission spectrum of the plasma jet are tested, and the TiO2 films prepared under different conditions are measured and analyzed. The results show that the TiO2 film prepared by negative corona plasma has a more uniform surface, and the Ti content in TiO2 film is higher than that by the positive corona plasma. The adhesion force is higher than 4.7 N/cm and the surface resistance of the film is less than 1010 Ω. The deposition of the TiO2 film is closely related to the nucleation mechanism of the precursor in the plasma jet and/or the interface between jet and substrate. These results will provide useful reference for preparing uniform and functional oxide film materials by atmospheric pressure plasma jet.
      通信作者: 欧阳吉庭, jtouyang@bit.edu.cn
      Corresponding author: Ouyang Ji-Ting, jtouyang@bit.edu.cn
    [1]

    Yu J C, Yu J, Ho W, Zhao J 2002 J. Photochem. Photobiol., A 148 331Google Scholar

    [2]

    Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O’Shea K, Entezari M H, Dionysiou D D 2012 Appl. Catal., B 125 331Google Scholar

    [3]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [4]

    Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A 2011 Langmuir 27 3275Google Scholar

    [5]

    Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U 2013 Nano Lett. 13 5329Google Scholar

    [6]

    Tong X, Lin E, Wu J, Wang Z M 2016 Adv. Sci. 3 1500201Google Scholar

    [7]

    Stefik M, Heiligtag F J, Niederberger M, Grätzel M 2013 ACS Nano 7 8981Google Scholar

    [8]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [9]

    Lee Y, Chae J, Kang M 2010 J. Ind. Eng. Chem. 16 609Google Scholar

    [10]

    赵坤, 朱凤, 王莉芳, 孟铁军, 张保澄, 赵夔 2000 物理学报 50 1390Google Scholar

    Zhao K, Zhu F, Wang L F, Meng T J, Zhang B C, Zhao K 2000 Acta Phys. Sin. 50 1390Google Scholar

    [11]

    Alvarez R, Romero-Gomez P, Gil-Rostra J, Cotrino J, Yubero F, GonzalezElipe A R, Palmero A 2013 Phys. Status Solidi A 210 796Google Scholar

    [12]

    Sung Y M 2013 Energy Procedia 34 582Google Scholar

    [13]

    Mathur S, Kuhn P 2006 Surf. Coat. Technol. 201 807Google Scholar

    [14]

    Nie L H, Shi C, Xu Y, Wu Q H, Zhu A M 2007 Plasma Processes Polym. 4 574Google Scholar

    [15]

    Huang C, Chang Y C, Wu S Y 2010 J. Chin. Chem. Soc. 57 1204Google Scholar

    [16]

    Mauchauffé R, Kang S C, Moon S Y 2018 Surf. Coat. Technol. 376 84Google Scholar

    [17]

    Chen Q Q, Liu Q R, Hubert J, Huang W D, Baert K, Wallaert G, Terryn H, Delplancke-Ogletree M P, Reniers F 2017 Surf. Coat. Technol. 310 173Google Scholar

    [18]

    Fakhouri H, Salem D B, Carton O, Pulpytel J, Arefi-Khonsari F 2014 J. Phys. D: Appl. Phys. 47 265301Google Scholar

    [19]

    Duminica F D, Maury F, Senocq F 2004 Surf. Coat. Technol. 188 255Google Scholar

    [20]

    Kment S, Kluson P, Zabova H, Churpita A, Chichina M, Cada M, Gregora I, Krysa J, Hubicka Z 2009 Surf. Coat. Technol. 204 667Google Scholar

    [21]

    Mauchauffé R, Kang S C, Kim J W, Kim J H, Moon S Y 2019 Curr. Appl. Phys. 19 1296Google Scholar

    [22]

    Gazal Y, Dublanche-Tixier C, Chazelas C, Colas M, Carles P, Tristant P 2016 Thin Solid Films 600 43Google Scholar

    [23]

    Perraudeau A, Dublanche-Tixier C, Tristant P, Chazelas C 2019 Appl. Surf. Sci. 493 703Google Scholar

    [24]

    Banerjee S, Adhikari E, Sapkota P, Sebastian A, Ptasinska S 2020 Materials 13 2931Google Scholar

    [25]

    Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb H R, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F 2014 Appl. Catal., B 144 12Google Scholar

    [26]

    Polat O, Aytug T, Lupini A R, Paranthaman P M, Ertugrul M, Bogorin D F, Meyer H M, Wang W, Pennycook S J, Christen D K 2013 Mater. Res. Bull. 48 352Google Scholar

    [27]

    Matsui H, Tabata H 2005 J. Appl. Phys. 97 123511Google Scholar

    [28]

    Simonsen M, Li Z, Sogaard E 2009 Appl. Surf. Sci. 255 8054Google Scholar

    [29]

    Laidani N, Cheyssac P, Perriere J, Bartali R, Gottardi G, Luciu I, Micheli V 2010 J. Phys. D: Appl. Phys. 43 485402Google Scholar

    [30]

    丁新艳, 刘新群, 谭帅霞, 邓凯, 王进 2014 涂料工业 44 60Google Scholar

    Ding X Y, Liu X Q, Tang S X, Deng K, Wang J 2014 Paint & Coatings Industry 44 60Google Scholar

    [31]

    海彬 2017 硕士学位论文 (郑州: 郑州大学)

    Hai B 2017 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [32]

    Borras A, Sanchez-Valencia J R, Widmer R, Rico V J, Justo A, Gonzalez-Elipe A R 2009 Cryst. Growth Des. 9 2868Google Scholar

    [33]

    Gazal Y, Chazelas C, Dublanche-Tixier C, Tristant P 2017 J. Appl. Phys. 121 123301Google Scholar

    [34]

    Li X C, Lin X T, Wu K Y, Jia P G, Dong L F, Ran J X 2018 Plasma Processes Polym. 15 1700224Google Scholar

  • 图 1  大气压电晕放电等离子体射流制备薄膜材料的装置示意图

    Fig. 1.  Schematic setup of atmospheric pressure plasma jet and material preparation.

    图 2  大气压电晕等离子体射流的电流-电压波形图和放电的CCD图像 (a), (c)正电压; (b), (d)负电压(峰-峰值Vs都是2.0 kV, CCD相机曝光时间0.5 s)

    Fig. 2.  Current-voltage waveforms and CCD images of atmospheric pressure plasma discharge: (a), (c) positive power; (b), (d) negative power (Vs = 2.0 kV, the exposure time is 0.5 s).

    图 3  正极性电晕放电等离子体制备的TiO2薄膜 (a) CCD相机拍摄的表观图; (b) 相应区域的SEM图(电压峰-峰值Vs为2.0 kV, 薄膜沉积时间为3 min)

    Fig. 3.  Titanium oxide thin film prepared by positive corona discharge plasma: (a) Image taken by the CCD camera; (b) the SEM images of corresponding area. Vs = 2.0 kV. The deposition time of the thin film is 3 min.

    图 4  负极性电晕放电等离子体制备TiO2薄膜 (a) CCD相机拍摄的表观图; (b) 特定区域的SEM图(电压峰-峰值Vs为2.0 kV, 薄膜沉积时间为3 min)

    Fig. 4.  Titanium oxide thin film prepared by negative corona discharge plasma: (a) Image taken by the CCD camera; (b) the SEM images of corresponding area. Vs = 2.0 kV. The deposition time of the thin film is 3 min.

    图 5  正负极性电晕放电等离子体制备的TiO2薄膜的XPS图 (a)—(c) 正极性; (d)—(f) 负极性; 薄膜表面被剥离3 nm

    Fig. 5.  XPS diagrams of TiO2 films prepared by positive and negative corona discharge: (a)–(c) Positive; (d)–(f) negative. The surface of films is stripped off about 3 nm.

    图 6  大间隙电晕等离子体射流制备TiO2颗粒的SEM图

    Fig. 6.  SEM images of TiO2 nanoparticles prepared by large-gap atmospheric pressure plasma jet.

    图 7  电晕放电等离子体射流的发射光谱 (a), (b)纯氩气负电晕放电; (c), (d) 氩气和TTIP混合气体正电晕放电; (e), (f) 氩气和TTIP混合气体负电晕放电

    Fig. 7.  Emission spectra of corona discharge plasma jet: (a), (b) Argon negative corona; (c), (d) argon + TTIP positive corona; (e), (f) argon + TTIP negative corona.

    图 8  正负电晕等离子体射流制备TiO2薄膜的物理过程示意图 (d = 6 mm)

    Fig. 8.  Physical processes of TiO2 film growth in positive and negative corona discharge plasma jet (d = 6 mm).

    表 1  不同极性电晕放电等离子体制备TiO2薄膜的含量参数比较

    Table 1.  Comparison of parameters of TiO2 films prepared with corona discharge plasma with different polarity.

    电源
    类型
    XPS Concentrations/%
    (atom percent)
    Ratio
    TiOC O/Ti
    正极性Surface7.338.054.74.65
    Sputtering17.765.317.03.69
    负极性Surface8.333.857.94.09
    Sputtering22.057.320.72.59
    下载: 导出CSV
  • [1]

    Yu J C, Yu J, Ho W, Zhao J 2002 J. Photochem. Photobiol., A 148 331Google Scholar

    [2]

    Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O’Shea K, Entezari M H, Dionysiou D D 2012 Appl. Catal., B 125 331Google Scholar

    [3]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [4]

    Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A 2011 Langmuir 27 3275Google Scholar

    [5]

    Guldin S, Kohn P, Stefik M, Song J, Divitini G, Ecarla F, Ducati C, Wiesner U, Steiner U 2013 Nano Lett. 13 5329Google Scholar

    [6]

    Tong X, Lin E, Wu J, Wang Z M 2016 Adv. Sci. 3 1500201Google Scholar

    [7]

    Stefik M, Heiligtag F J, Niederberger M, Grätzel M 2013 ACS Nano 7 8981Google Scholar

    [8]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W 2014 Chem. Rev. 114 9919Google Scholar

    [9]

    Lee Y, Chae J, Kang M 2010 J. Ind. Eng. Chem. 16 609Google Scholar

    [10]

    赵坤, 朱凤, 王莉芳, 孟铁军, 张保澄, 赵夔 2000 物理学报 50 1390Google Scholar

    Zhao K, Zhu F, Wang L F, Meng T J, Zhang B C, Zhao K 2000 Acta Phys. Sin. 50 1390Google Scholar

    [11]

    Alvarez R, Romero-Gomez P, Gil-Rostra J, Cotrino J, Yubero F, GonzalezElipe A R, Palmero A 2013 Phys. Status Solidi A 210 796Google Scholar

    [12]

    Sung Y M 2013 Energy Procedia 34 582Google Scholar

    [13]

    Mathur S, Kuhn P 2006 Surf. Coat. Technol. 201 807Google Scholar

    [14]

    Nie L H, Shi C, Xu Y, Wu Q H, Zhu A M 2007 Plasma Processes Polym. 4 574Google Scholar

    [15]

    Huang C, Chang Y C, Wu S Y 2010 J. Chin. Chem. Soc. 57 1204Google Scholar

    [16]

    Mauchauffé R, Kang S C, Moon S Y 2018 Surf. Coat. Technol. 376 84Google Scholar

    [17]

    Chen Q Q, Liu Q R, Hubert J, Huang W D, Baert K, Wallaert G, Terryn H, Delplancke-Ogletree M P, Reniers F 2017 Surf. Coat. Technol. 310 173Google Scholar

    [18]

    Fakhouri H, Salem D B, Carton O, Pulpytel J, Arefi-Khonsari F 2014 J. Phys. D: Appl. Phys. 47 265301Google Scholar

    [19]

    Duminica F D, Maury F, Senocq F 2004 Surf. Coat. Technol. 188 255Google Scholar

    [20]

    Kment S, Kluson P, Zabova H, Churpita A, Chichina M, Cada M, Gregora I, Krysa J, Hubicka Z 2009 Surf. Coat. Technol. 204 667Google Scholar

    [21]

    Mauchauffé R, Kang S C, Kim J W, Kim J H, Moon S Y 2019 Curr. Appl. Phys. 19 1296Google Scholar

    [22]

    Gazal Y, Dublanche-Tixier C, Chazelas C, Colas M, Carles P, Tristant P 2016 Thin Solid Films 600 43Google Scholar

    [23]

    Perraudeau A, Dublanche-Tixier C, Tristant P, Chazelas C 2019 Appl. Surf. Sci. 493 703Google Scholar

    [24]

    Banerjee S, Adhikari E, Sapkota P, Sebastian A, Ptasinska S 2020 Materials 13 2931Google Scholar

    [25]

    Fakhouri H, Pulpytel J, Smith W, Zolfaghari A, Mortaheb H R, Meshkini F, Jafari R, Sutter E, Arefi-Khonsari F 2014 Appl. Catal., B 144 12Google Scholar

    [26]

    Polat O, Aytug T, Lupini A R, Paranthaman P M, Ertugrul M, Bogorin D F, Meyer H M, Wang W, Pennycook S J, Christen D K 2013 Mater. Res. Bull. 48 352Google Scholar

    [27]

    Matsui H, Tabata H 2005 J. Appl. Phys. 97 123511Google Scholar

    [28]

    Simonsen M, Li Z, Sogaard E 2009 Appl. Surf. Sci. 255 8054Google Scholar

    [29]

    Laidani N, Cheyssac P, Perriere J, Bartali R, Gottardi G, Luciu I, Micheli V 2010 J. Phys. D: Appl. Phys. 43 485402Google Scholar

    [30]

    丁新艳, 刘新群, 谭帅霞, 邓凯, 王进 2014 涂料工业 44 60Google Scholar

    Ding X Y, Liu X Q, Tang S X, Deng K, Wang J 2014 Paint & Coatings Industry 44 60Google Scholar

    [31]

    海彬 2017 硕士学位论文 (郑州: 郑州大学)

    Hai B 2017 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [32]

    Borras A, Sanchez-Valencia J R, Widmer R, Rico V J, Justo A, Gonzalez-Elipe A R 2009 Cryst. Growth Des. 9 2868Google Scholar

    [33]

    Gazal Y, Chazelas C, Dublanche-Tixier C, Tristant P 2017 J. Appl. Phys. 121 123301Google Scholar

    [34]

    Li X C, Lin X T, Wu K Y, Jia P G, Dong L F, Ran J X 2018 Plasma Processes Polym. 15 1700224Google Scholar

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟. 物理学报, 2025, 74(2): 025202. doi: 10.7498/aps.74.20241241
    [2] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241241
    [3] 周雄峰, 陈彬, 刘坤. 氩气等离子体射流特性: 电压、气流、外磁场的综合影响. 物理学报, 2024, 73(22): 225201. doi: 10.7498/aps.73.20241166
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [6] 朱彦熔, 常正实. 脉冲电压上升沿对He 大气压等离子体射流管内放电发展演化特性的影响. 物理学报, 2022, 71(2): 025202. doi: 10.7498/aps.71.20210470
    [7] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [8] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [9] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [10] 朱伟君, 陈金鑫, 高宇晗, 杨德仁, 马向阳. 硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用. 物理学报, 2019, 68(12): 124204. doi: 10.7498/aps.68.20190300
    [11] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [12] 王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴. 线-铝箔电极电晕放电激励器的推力理论与实验研究. 物理学报, 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [13] 杨素红, 赵立山, 王强, 沈容, 孙刚, 李晨曦, 陆坤权. 以二氧化钛前驱体为基的电流变液的成分分析和机理研究. 物理学报, 2013, 62(16): 164701. doi: 10.7498/aps.62.164701
    [14] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [15] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究. 物理学报, 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [16] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究. 物理学报, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [17] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [18] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [19] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [20] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
计量
  • 文章访问数:  6975
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-01-22
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-05-05

/

返回文章
返回