搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钽掺杂二氧化钛薄膜的光电性能研究

薛将 潘风明 裴煜

钽掺杂二氧化钛薄膜的光电性能研究

薛将, 潘风明, 裴煜
PDF
导出引用
导出核心图
  • 采用脉冲激光沉积法 (PLD), 以石英玻璃为衬底制备了钽掺杂TiO2薄膜并研究了薄膜样品的光电性质. 沉积氧气分气压从0.3 Pa变化到0.7 Pa时薄膜样品的帯隙变化范围是3.26 eV到3.49 eV. 通过测量电阻率随温度的变化关系确定了薄膜内部的主要导电机理. 在150 K到210 K温度范围内, 热激发导电机理是主要的导电机理; 而在10 K到150 K范围内; 电导率随温度的变化复合Mott的多级变程跳跃模型 (VRH); 在210 K到300 K范围内, 电阻率和exp(b/T)1/2呈正比关系.
    • 基金项目: 国家自然科学基金 (批准号:51032002) 和国家高技术研究发展计划项目 (批准号:2011AA050526) 资助的课题.
    [1]

    Maness P Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W 1999 Appl. Environ. Microb. 65 4094

    [2]

    Wu J, Lv X, Zhang L, Xia Y, Huang F, Xu F 2009 J. Alloys Compd. 496 1

    [3]

    Regan B O, Gratzel M 1991 Nature 353 737

    [4]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys Sin 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 物理学报 54 1914]

    [5]

    Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic Renault N 2004 Appl. Catal. B: Environ. 52 213

    [6]

    Esquivel K, Arriaga L, Rodriguez F, Martinez L, Godinez L 2009 Water Res. 43 3593

    [7]

    Moon J, Park J, Lee S, Zyung T, Kim I 2010 Sens. Actuators B: Chem. 149 301

    [8]

    Asahi R, Taga Y,Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [9]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [10]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [11]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [12]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Riba L G S, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [13]

    Zhang R S, Liu Y, Teng F 2012 Acta Phys. Sin. 61 392 (in Chinese) [章瑞铄, 刘涌, 滕繁 2012 物理学报 61 392]

    [14]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 391 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 391]

    [15]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [16]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 4018

    [17]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T 2007 Jpn. J. Appl. Phys. 46 5275

    [18]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T 2008 Thin Solid Films 516 5754

    [19]

    Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2008 Appl. Phys. Exp. 1 111203

    [20]

    Patra A, Friend C S, Kapoor R, Prasad P N 2003 Chem. Mater. 15 3650

    [21]

    Lee W E, Fang Y K, Ho J J, Chen C Y, Chiou L H, Wang S J, Dai F, Heieh T, Tsai R Y, Huang D, Ho F C 2002 Solid State Electron 46 477

    [22]

    Tak Y H, Kim K B, Park H G, Lee K H, Lee J R 2002 Thin Solid Films 411 12

    [23]

    Miao W, Li X, Zhang Q, Huang L, Zhang Z, Zhang L, Yan X 2006 Thin Solid Films 500 70

    [24]

    Daude N, Gout C, Jouanin C 1977 Phys. Rev. B 15 3229

    [25]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [26]

    Yasuhiro I, Hirokazu K 2001 Appl. Surf. Sci. 169 508

    [27]

    Zhang S X, Dhar S, Yu W, Xu H, Ogale S B, Venkatesan T 2007 Appl. Phys. L 91 112

    [28]

    Yong T K, Tou T Y, Teo B S 2005 Appl. Surf. Sci. 248 388

    [29]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [30]

    Efros A L, Shklovskii B I 1975 J. Phys. C 8 L49

    [31]

    Mott N F, Davis E A 1979 Calendon Press Oxford

    [32]

    Yildiz A, Lisesivdin S B, Kasap M, Mardare D 2009 Physica B 404 1423

    [33]

    Mott N F 1968 J. Non-Cryst. Solids 1 1

  • [1]

    Maness P Smolinski S, Blake D, Huang Z, Wolfrum E, Jacoby W 1999 Appl. Environ. Microb. 65 4094

    [2]

    Wu J, Lv X, Zhang L, Xia Y, Huang F, Xu F 2009 J. Alloys Compd. 496 1

    [3]

    Regan B O, Gratzel M 1991 Nature 353 737

    [4]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys Sin 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 物理学报 54 1914]

    [5]

    Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic Renault N 2004 Appl. Catal. B: Environ. 52 213

    [6]

    Esquivel K, Arriaga L, Rodriguez F, Martinez L, Godinez L 2009 Water Res. 43 3593

    [7]

    Moon J, Park J, Lee S, Zyung T, Kim I 2010 Sens. Actuators B: Chem. 149 301

    [8]

    Asahi R, Taga Y,Mannstadt W, Freeman A J 2000 Phys. Rev. B 61 7459

    [9]

    Tang H, Prasad K, Sanjines R, Schmid P E, Levy F 1994 J. Appl. Phys. 75 2042

    [10]

    Liu X D, Jiang E Y, Li Z Q, Song Q G 2008 Appl. Phys. Lett. 92 252104

    [11]

    Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T 2005 Appl. Phys. Lett. 86 252101

    [12]

    Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Riba L G S, Ogale S B, Vispute R D, Venkatesan T 2007 J. Appl. Phys. 102 013701

    [13]

    Zhang R S, Liu Y, Teng F 2012 Acta Phys. Sin. 61 392 (in Chinese) [章瑞铄, 刘涌, 滕繁 2012 物理学报 61 392]

    [14]

    Luo X D, Di G Q 2012 Acta Phys. Sin. 61 391 (in Chinese) [罗晓东, 狄国庆 2012 物理学报 61 391]

    [15]

    Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T, Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063

    [16]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 4018

    [17]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T 2007 Jpn. J. Appl. Phys. 46 5275

    [18]

    Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T 2008 Thin Solid Films 516 5754

    [19]

    Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T, Hasegawa T 2008 Appl. Phys. Exp. 1 111203

    [20]

    Patra A, Friend C S, Kapoor R, Prasad P N 2003 Chem. Mater. 15 3650

    [21]

    Lee W E, Fang Y K, Ho J J, Chen C Y, Chiou L H, Wang S J, Dai F, Heieh T, Tsai R Y, Huang D, Ho F C 2002 Solid State Electron 46 477

    [22]

    Tak Y H, Kim K B, Park H G, Lee K H, Lee J R 2002 Thin Solid Films 411 12

    [23]

    Miao W, Li X, Zhang Q, Huang L, Zhang Z, Zhang L, Yan X 2006 Thin Solid Films 500 70

    [24]

    Daude N, Gout C, Jouanin C 1977 Phys. Rev. B 15 3229

    [25]

    Park S M, Ikegami T, Ebihara K, Shin P K 2006 Appl. Surf. Sci. 253 1522

    [26]

    Yasuhiro I, Hirokazu K 2001 Appl. Surf. Sci. 169 508

    [27]

    Zhang S X, Dhar S, Yu W, Xu H, Ogale S B, Venkatesan T 2007 Appl. Phys. L 91 112

    [28]

    Yong T K, Tou T Y, Teo B S 2005 Appl. Surf. Sci. 248 388

    [29]

    Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. 31 44

    [30]

    Efros A L, Shklovskii B I 1975 J. Phys. C 8 L49

    [31]

    Mott N F, Davis E A 1979 Calendon Press Oxford

    [32]

    Yildiz A, Lisesivdin S B, Kasap M, Mardare D 2009 Physica B 404 1423

    [33]

    Mott N F 1968 J. Non-Cryst. Solids 1 1

  • [1] 韩军, 张鹏, 巩海波, 杨晓朋, 邱智文, 自敏, 曹丙强. 生长条件对脉冲激光沉积制备ZnO:Al薄膜光电性能的影响. 物理学报, 2013, 62(21): 216102. doi: 10.7498/aps.62.216102
    [2] 刘骐萱, 王永平, 刘文军, 丁士进. 基于Ni电极和ZrO2/SiO2/ZrO2介质的MIM电容的导电机理研究. 物理学报, 2017, 66(8): 087301. doi: 10.7498/aps.66.087301
    [3] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [4] 邹 璐, 汪 雷, 黄靖云, 赵炳辉, 叶志镇. 硅衬底上Zn1-xMgxO薄膜的结构与光学性质. 物理学报, 2003, 52(4): 935-938. doi: 10.7498/aps.52.935
    [5] 崔平, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 王学昭. 极性分子型电流变液导电机理研究. 物理学报, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [6] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [7] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿). 物理学报, 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [8] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [9] 巴德纯, 廖国进, 闫绍峰. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [10] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究. 物理学报, 2013, 62(11): 118104. doi: 10.7498/aps.62.118104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  669
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-04-14
  • 刊出日期:  2013-08-05

钽掺杂二氧化钛薄膜的光电性能研究

  • 1. 南京航空航天大学应用物理系, 南京 211100
    基金项目: 

    国家自然科学基金 (批准号:51032002) 和国家高技术研究发展计划项目 (批准号:2011AA050526) 资助的课题.

摘要: 采用脉冲激光沉积法 (PLD), 以石英玻璃为衬底制备了钽掺杂TiO2薄膜并研究了薄膜样品的光电性质. 沉积氧气分气压从0.3 Pa变化到0.7 Pa时薄膜样品的帯隙变化范围是3.26 eV到3.49 eV. 通过测量电阻率随温度的变化关系确定了薄膜内部的主要导电机理. 在150 K到210 K温度范围内, 热激发导电机理是主要的导电机理; 而在10 K到150 K范围内; 电导率随温度的变化复合Mott的多级变程跳跃模型 (VRH); 在210 K到300 K范围内, 电阻率和exp(b/T)1/2呈正比关系.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回