Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fragile-to-strong transition in metallic glass-forming liquids

Hu Li-Na Zhao Xi Zhang Chun-Zhi

Citation:

Fragile-to-strong transition in metallic glass-forming liquids

Hu Li-Na, Zhao Xi, Zhang Chun-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It has been observed that many glass-forming liquids are transformed from fragile to strong liquids in a supercooled region upon cooling. This is the so-called fragile-to-strong (F-S) transition. Since its discovery in water, the F-S transition, as a frontier problem, as well as a hot issue, in condensed matter physics and material science, has aroused the considerable interest of researchers. It has been generally accepted that the F-S transition might be a universal dynamic behavior of metallic glass-forming liquid (MGFL). Studying the F-S transition is important not only for better understanding the nature of glass transition, uncovering the microstructural inheritance during the liquid-solid transformation, clarifying the structural competition during crystallization, improving the stability of MGs, but also for promoting the standardization during the production and treatment technology of MGs. In this paper, the general and special features of the F-S transition for bulk and marginal MGFLs are studied and described in terms of a physical model. A characteristic parameter f is introduced to quantify the F-S transition. With two relaxation regimes, on the basis of Mauro-Yuanzheng-Ellison-Gupta-Allan model, we propose a generalized viscosity model for capturing the liquids with the F-S transition. Using this model, we calculate the F-S transition temperature for metallic glass. From the calculation results, the F-S transition might occur around (1.36±0.03) Tg. By using the hyperquenching annealing-calorimetric approach, we find that the anomalous crystallization behavior occurs in both LaAlNi and CuZrAl glass ribbons. This phenomenon implies the existence of a thermodynamic F-S transition, which could be used as an alternative method of detecting the F-S transition in MGFLs. To date, the origin of the F-S transition is far from understanding. We find that the F-S transition in CuZr(Al) GFLs is attributed to the competition among the MRO clusters composed of different locally ordering configurations. By comparing the parameter f with the parameter r that characterizes the competition between the α and the slow β relaxations in 19 MGFLs, we find that the slow β relaxation plays a dominant role in the F-S transition and the extent of the F-S transition is mainly determined by the degree of the comparability in structure units between the α and the slow β relaxations. The existence of the liquid-liquid phase transition might also be the root of the F-S transition. The tendency of investigation of the F-S transition is also evaluated.
      Corresponding author: Hu Li-Na, hulina0850@sina.com
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016YFB0300501) and the National Natural Science Foundation of China (Grant Nos. 51571131, 51501104).
    [1]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [2]

    Angell C A 1995 Science 267 1924

    [3]

    Angell C A 1988 J. Non-Cryst. Solids 102 205

    [4]

    Debenedetti P G, Stillinger F H, Truskett T M, Roberts C J 1999 J. Phys. Chem. B 103 7390

    [5]

    Novikov V N, Sokolov A P 2004 Nature 431 961

    [6]

    Hu L N, Bian X F, Wang W M, Zhang J Y, Jia Y B 2004 Acta Mater. 52 4773

    [7]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492

    [8]

    Agladze N I, Sievers A J 1998 Phys. Rev. Lett. 80 4209

    [9]

    Speedy R J, Debenedetti P G, Smith R S, Huang C, Kay B D 1996 J. Chem. Phys. 105 240

    [10]

    Barrat J L, Badro J, Gillet P 1997 Mol. Simul. 20 17

    [11]

    Saika-Voivod I, Poole P H, Sciortino F 2001 Nature 412 514

    [12]

    van Beest B W, Kramer G J, van Santen R A 1990 Phys. Rev. Lett. 64 1955

    [13]

    Hemmati M, Moynihan C T, Angell C A 2001 J. Chem. Phys. 115 6663

    [14]

    Way C, Wadhwa P, Busch R 2007 Acta Mater. 55 2977

    [15]

    Li J J Z, Rhim W K, Kim C P, Samwer K, Johnson W L 2011 Acta Mater. 59 2166

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508

    [19]

    Georgarakis K, Louzguine-Luzgin D V, Antonowicz J, Vaughan G, Yavari A R, Egami T, Inoue A 2011 Acta Mater. 59 708

    [20]

    Guo Y F, Yavari A R, Zhang T 2012 J. Alloys Compd. 536 S91

    [21]

    Wang D, Peng H Y, Xu X Y, Chen B L, Wu C L, Sun M H 2010 Chin. Phys. Lett. 27 036401

    [22]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [23]

    Mauro N A, Blodgett M, Johnson M L, Vogt A J, Kelton K F 2014 Nat. Commun. 5 4616

    [24]

    Georgarakis K, Hennet L, Evangelakis G A, Antonowicz J, Bokas G B, Honkimaki V, Bytchkov A, Chen M W, Yavari A R 2015 Acta Mater. 87 174

    [25]

    Orava J, Weber H, Kaban I, Greer A L 2016 J. Chem. Phys. 144 194503

    [26]

    Wei S, Lucas P, Angell C A 2015 J. Appl. Phys. 118 034903

    [27]

    Xu L M, Ehrenberg I, Buldyrev S V, Stanley H E 2006 J. Phys.: Condens. Matter 18 S2239

    [28]

    Xu Li M, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [29]

    Bertolazzo A A, Barbosa M C 2014 Physica A: Statist. Mech. Appl. 404 150

    [30]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [31]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. USA 106 19780

    [32]

    Gupta P K, Mauro J C 2009 J. Chem. Phys. 130 094503

    [33]

    Mauro J C, Gupta P K, Loucks R J 2009 J. Chem. Phys. 130 234503

    [34]

    Mauro J C, Loucks Roger J 2008 Phys. Rev. E 78 021502

    [35]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [36]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508

    [37]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [38]

    Starr F W, Angell C A, Stanley H E 2003 Physica A: Statist. Mech. Appl. 323 51

    [39]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 113 15001

    [40]

    Hu L N, Yue Y Z 2008 J. Phys. Chem. B 112 9053

    [41]

    Hu L N, Zhang C Z, Yue Y Z 2010 Appl. Phys. Lett. 96 221908

    [42]

    Johari G P 2003 J. Phys. Chem. B 107 9063

    [43]

    Hu L N, Yue Y Z, Zhang C Z 2011 Appl. Phys. Lett. 98 081904

    [44]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258

    [45]

    Zheng H J, L Y M, Sun Q J, Hu L N, Yang X N, Yue Y Z 2016 Sci. Bull. 61 706

    [46]

    Na J H, Sohn S W, Kim W T, Kim D H 2007 Scripta Mater. 57 225

    [47]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [48]

    Kchemann S, Samwer K 2016 Acta Mater. 104 119

    [49]

    Jagla E A 1999 J. Phys.: Condens. Matter 11 10251

    [50]

    Tanaka H 2003 J. Phys.: Condens. Matter 15 L703

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 95 117802

    [52]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [53]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [54]

    McMillan P F 2004 J. Mater. Chem. 14 1506

    [55]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, van Q V, Majérus O, Benmore C J, Weber R 2008 Science 322 566

    [56]

    de Marzio M, Camisasca G, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084502

    [57]

    de Marzio M, Camisasca G, Conde M M, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084505

    [58]

    Li G, Wang Y Y, Liaw P K, Li Y C, Liu R P 2012 Phys. Rev. Lett. 109 125501

    [59]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [60]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [61]

    Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R 2013 Nat. Commun. 4 2083

    [62]

    Zhou C, Hu L N, Sun Q J, Qin J Y, Bian X F, Yue Y Z 2013 Appl. Phys. Lett. 103 171904

    [63]

    Wang C W, Hu L N, Wei C, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Chem. Phys. 141 164507

    [64]

    Jakse N, Pasturel A 2008 J. Chem. Phys. 129 104503

    [65]

    Cajahuaringa S, de Koning M, Antonelli A 2013 J. Chem. Phys. 139 224504

    [66]

    Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S 2007 Eur. Phys. J. Special Topics 141 53

    [67]

    Monasterio M, Jansson H, Gaitero J J, Dolado J S, Cerveny S 2013 J. Chem. Phys. 139 164714

    [68]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Chem. Phys. 143 164504

    [69]

    Orava J, Hewak D W, Greer A L 2015 Adv. Funct. Mater. 25 4851

  • [1]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [2]

    Angell C A 1995 Science 267 1924

    [3]

    Angell C A 1988 J. Non-Cryst. Solids 102 205

    [4]

    Debenedetti P G, Stillinger F H, Truskett T M, Roberts C J 1999 J. Phys. Chem. B 103 7390

    [5]

    Novikov V N, Sokolov A P 2004 Nature 431 961

    [6]

    Hu L N, Bian X F, Wang W M, Zhang J Y, Jia Y B 2004 Acta Mater. 52 4773

    [7]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492

    [8]

    Agladze N I, Sievers A J 1998 Phys. Rev. Lett. 80 4209

    [9]

    Speedy R J, Debenedetti P G, Smith R S, Huang C, Kay B D 1996 J. Chem. Phys. 105 240

    [10]

    Barrat J L, Badro J, Gillet P 1997 Mol. Simul. 20 17

    [11]

    Saika-Voivod I, Poole P H, Sciortino F 2001 Nature 412 514

    [12]

    van Beest B W, Kramer G J, van Santen R A 1990 Phys. Rev. Lett. 64 1955

    [13]

    Hemmati M, Moynihan C T, Angell C A 2001 J. Chem. Phys. 115 6663

    [14]

    Way C, Wadhwa P, Busch R 2007 Acta Mater. 55 2977

    [15]

    Li J J Z, Rhim W K, Kim C P, Samwer K, Johnson W L 2011 Acta Mater. 59 2166

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508

    [19]

    Georgarakis K, Louzguine-Luzgin D V, Antonowicz J, Vaughan G, Yavari A R, Egami T, Inoue A 2011 Acta Mater. 59 708

    [20]

    Guo Y F, Yavari A R, Zhang T 2012 J. Alloys Compd. 536 S91

    [21]

    Wang D, Peng H Y, Xu X Y, Chen B L, Wu C L, Sun M H 2010 Chin. Phys. Lett. 27 036401

    [22]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [23]

    Mauro N A, Blodgett M, Johnson M L, Vogt A J, Kelton K F 2014 Nat. Commun. 5 4616

    [24]

    Georgarakis K, Hennet L, Evangelakis G A, Antonowicz J, Bokas G B, Honkimaki V, Bytchkov A, Chen M W, Yavari A R 2015 Acta Mater. 87 174

    [25]

    Orava J, Weber H, Kaban I, Greer A L 2016 J. Chem. Phys. 144 194503

    [26]

    Wei S, Lucas P, Angell C A 2015 J. Appl. Phys. 118 034903

    [27]

    Xu L M, Ehrenberg I, Buldyrev S V, Stanley H E 2006 J. Phys.: Condens. Matter 18 S2239

    [28]

    Xu Li M, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [29]

    Bertolazzo A A, Barbosa M C 2014 Physica A: Statist. Mech. Appl. 404 150

    [30]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [31]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. USA 106 19780

    [32]

    Gupta P K, Mauro J C 2009 J. Chem. Phys. 130 094503

    [33]

    Mauro J C, Gupta P K, Loucks R J 2009 J. Chem. Phys. 130 234503

    [34]

    Mauro J C, Loucks Roger J 2008 Phys. Rev. E 78 021502

    [35]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [36]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508

    [37]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [38]

    Starr F W, Angell C A, Stanley H E 2003 Physica A: Statist. Mech. Appl. 323 51

    [39]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 113 15001

    [40]

    Hu L N, Yue Y Z 2008 J. Phys. Chem. B 112 9053

    [41]

    Hu L N, Zhang C Z, Yue Y Z 2010 Appl. Phys. Lett. 96 221908

    [42]

    Johari G P 2003 J. Phys. Chem. B 107 9063

    [43]

    Hu L N, Yue Y Z, Zhang C Z 2011 Appl. Phys. Lett. 98 081904

    [44]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258

    [45]

    Zheng H J, L Y M, Sun Q J, Hu L N, Yang X N, Yue Y Z 2016 Sci. Bull. 61 706

    [46]

    Na J H, Sohn S W, Kim W T, Kim D H 2007 Scripta Mater. 57 225

    [47]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [48]

    Kchemann S, Samwer K 2016 Acta Mater. 104 119

    [49]

    Jagla E A 1999 J. Phys.: Condens. Matter 11 10251

    [50]

    Tanaka H 2003 J. Phys.: Condens. Matter 15 L703

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 95 117802

    [52]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [53]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [54]

    McMillan P F 2004 J. Mater. Chem. 14 1506

    [55]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, van Q V, Majérus O, Benmore C J, Weber R 2008 Science 322 566

    [56]

    de Marzio M, Camisasca G, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084502

    [57]

    de Marzio M, Camisasca G, Conde M M, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084505

    [58]

    Li G, Wang Y Y, Liaw P K, Li Y C, Liu R P 2012 Phys. Rev. Lett. 109 125501

    [59]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [60]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [61]

    Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R 2013 Nat. Commun. 4 2083

    [62]

    Zhou C, Hu L N, Sun Q J, Qin J Y, Bian X F, Yue Y Z 2013 Appl. Phys. Lett. 103 171904

    [63]

    Wang C W, Hu L N, Wei C, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Chem. Phys. 141 164507

    [64]

    Jakse N, Pasturel A 2008 J. Chem. Phys. 129 104503

    [65]

    Cajahuaringa S, de Koning M, Antonelli A 2013 J. Chem. Phys. 139 224504

    [66]

    Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S 2007 Eur. Phys. J. Special Topics 141 53

    [67]

    Monasterio M, Jansson H, Gaitero J J, Dolado J S, Cerveny S 2013 J. Chem. Phys. 139 164714

    [68]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Chem. Phys. 143 164504

    [69]

    Orava J, Hewak D W, Greer A L 2015 Adv. Funct. Mater. 25 4851

  • [1] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [2] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [3] Wu Zhen-Wei, Li Mao-Zhi, Xu Li-Mei, Wang Wei-Hua. Inherited structure of amorphous matter. Acta Physica Sinica, 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
    [4] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [5] Jin Xiao, Wang Li-Min. Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition. Acta Physica Sinica, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [6] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [7] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [8] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [9] Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang. Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [10] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [11] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [12] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [13] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [15] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Physica Sinica, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [19] Xu Feng, Huang Yong-Ren. . Acta Physica Sinica, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] . Acta Physica Sinica, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
Metrics
  • Abstract views:  5173
  • PDF Downloads:  476
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2017
  • Accepted Date:  10 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回