Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupled oscillation and shape instability of bubbles in acoustic field

Ma Yan Lin Shu-Yu Xu Jie

Coupled oscillation and shape instability of bubbles in acoustic field

Ma Yan, Lin Shu-Yu, Xu Jie
PDF
Get Citation
  • Based on the Lagrange's equation, the dynamic equations and shape mode equations of two bubbles with nonspherical distortion are obtained. The radial oscillations and shape instabilities of two bubbles with nonspherical distortion in an acoustic field are numerically investigated. The numerical results show that there are two coupled modes between two nonspherical bubbles: shape coupled mode and radial coupled mode. The coupled modes between two nonspherical bubbles depend on the shape modes of two bubbles. When the shape mode of the first bubble is equal to that of the second bubble (n=m), the shape coupled mode and radial coupled mode both exist. The interaction force between bubbles is caused by these two coupled modes. If the two bubbles have different shape mode orders (n m), there is a radially coupled mode between two bubbles. The interaction force between two bubbles is caused by radially coupled mode. The interaction caused by the radial coupling and shape coupling has an influence on the instability of gas bubble. The influencing factors depend on the shape mode, the equilibrium radius of neighboring bubble, and the driving acoustic field. The results demonstrate that the shape coupling can change the severity of the collapse of a gas bubble, and increase the ability of a gas bubble to resist distortion under a certain condition. The nonspherical disturbance of a real bubble in an acoustic field is not a single shape mode, but the coupling of different shape modes, so the shape coupling has an obvious influence on the shape instability of a real bubble. These may be the reason why bubbles can form some stable structures and keep stable oscillations in an acoustic field.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374200, 11674206), the Natural Science Foundation of Ningxia, China (Grant No. NZ17254), and the Top Discipline Construction (Pedagogy) Foundation of Colleges and Universities of Ning Xia, China (Grant No. NXYLXK2017B11).
    [1]

    Crum L A 1994 J. Acoust. Soc. Am. 95 559

    [2]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [3]

    Holot R G, Gaitan D F 1996 Phys. Rev. Lett. 77 3791

    [4]

    Zhang S G, Duncan J H 1994 Phys. Fluids 6 2352

    [5]

    Leong T, Yasui K, Kato K, Harvie D, Ashokkumar M, Kentish S 2014 Phys. Rev. E 89 043007

    [6]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [7]

    Feng Z C, Leal L G 1997 Annu. Rev. Fluid Mech. 29 201

    [8]

    Reddy A J, Szeri A J 2002 Phys. Fluids 14 2216

    [9]

    Harkin A A, Kaper T J, Nadim A 2013 Phys. Fluids 25 062101

    [10]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [11]

    Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954

    [12]

    Bogoyavlenskiy V A 2000 Phys. Rev. E 62 2158

    [13]

    Wang W J, Chen W Z 2003 J. Acoust. Soc. Am. 114 1898

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 物理学报 52 620]

    [15]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acust. 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [16]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808

    [17]

    Godinez F A, Navarrete M 2011 Phys. Rev. E 84 016312

    [18]

    Ueno I, Ando J, Koiwa Y, Saiki T, Kaneko T 2015 Eur. Phys. J. Special Topics 224 415

    [19]

    Lu Y, Katz J, Prosperetti A 2013 Phys. Fluids 25 073301

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [21]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023

    [22]

    Hens A, Biswas G, De S 2014 Phys. Fluids 26 012105

  • [1]

    Crum L A 1994 J. Acoust. Soc. Am. 95 559

    [2]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [3]

    Holot R G, Gaitan D F 1996 Phys. Rev. Lett. 77 3791

    [4]

    Zhang S G, Duncan J H 1994 Phys. Fluids 6 2352

    [5]

    Leong T, Yasui K, Kato K, Harvie D, Ashokkumar M, Kentish S 2014 Phys. Rev. E 89 043007

    [6]

    Pelekasis N A, Tsamopouslos J A 1990 Phys. Fluids A 2 1328

    [7]

    Feng Z C, Leal L G 1997 Annu. Rev. Fluid Mech. 29 201

    [8]

    Reddy A J, Szeri A J 2002 Phys. Fluids 14 2216

    [9]

    Harkin A A, Kaper T J, Nadim A 2013 Phys. Fluids 25 062101

    [10]

    Plesset M S 1954 J. Appl. Phys. 25 96

    [11]

    Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954

    [12]

    Bogoyavlenskiy V A 2000 Phys. Rev. E 62 2158

    [13]

    Wang W J, Chen W Z 2003 J. Acoust. Soc. Am. 114 1898

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 物理学报 52 620]

    [15]

    Qian M L, Cheng Q, Ge C Y 2002 Acta Acust. 27 289 (in Chinese) [钱梦騄, 程茜, 葛曹燕 2002 声学学报 27 289]

    [16]

    Hilgenfeldt S, Lohse D, Brenner M P 1996 Phys. Fluids 8 2808

    [17]

    Godinez F A, Navarrete M 2011 Phys. Rev. E 84 016312

    [18]

    Ueno I, Ando J, Koiwa Y, Saiki T, Kaneko T 2015 Eur. Phys. J. Special Topics 224 415

    [19]

    Lu Y, Katz J, Prosperetti A 2013 Phys. Fluids 25 073301

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [21]

    Zhang W J, An Y 2013 Phys. Rev. E 87 053023

    [22]

    Hens A, Biswas G, De S 2014 Phys. Fluids 26 012105

  • [1] Zhang Peng-Li, Lin Shu-Yu, Zhu Hua-Ze, Zhang Tao. Coupled resonance of bubbles in spherical cavitation clouds. Acta Physica Sinica, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [2] Qiao Yong-Fen, Zheng Shi-Wang. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [3] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Yao Xiong-Liang. Numerical simulation of bubbles coupled with an elastic membrane. Acta Physica Sinica, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [4] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. Study on coupling characteristics between bubble and complex walls at the same scale. Acta Physica Sinica, 2014, 63(17): 174701. doi: 10.7498/aps.63.174701
    [5] Ma Shan-Jun, Xu Xue-Xiang, Huang Pei-Tian, Hu Li-Yun. The discussion on Lagrange equation containing third order derivatives. Acta Physica Sinica, 2004, 53(11): 3648-3651. doi: 10.7498/aps.53.3648
    [6] Ding Guang-Tao. Acceleration-dependent Lagrangians in classical mechanics. Acta Physica Sinica, 2009, 58(6): 3620-3624. doi: 10.7498/aps.58.3620
    [7] Zhang A-Man, Yao Xiong-Liang. The law of the bubble motion near the wall. Acta Physica Sinica, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [8] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [9] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [10] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [11] Wu Wei, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
  • Citation:
Metrics
  • Abstract views:  272
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2017
  • Accepted Date:  05 November 2017
  • Published Online:  05 February 2018

Coupled oscillation and shape instability of bubbles in acoustic field

    Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
  • 1. Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710062, China;
  • 2. Engineering Research Center of Nanostructure and Functional Materials, College of Physics and Electronic Information Engineering, Ningxia Normal University, Guyuan 756000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11374200, 11674206), the Natural Science Foundation of Ningxia, China (Grant No. NZ17254), and the Top Discipline Construction (Pedagogy) Foundation of Colleges and Universities of Ning Xia, China (Grant No. NXYLXK2017B11).

Abstract: Based on the Lagrange's equation, the dynamic equations and shape mode equations of two bubbles with nonspherical distortion are obtained. The radial oscillations and shape instabilities of two bubbles with nonspherical distortion in an acoustic field are numerically investigated. The numerical results show that there are two coupled modes between two nonspherical bubbles: shape coupled mode and radial coupled mode. The coupled modes between two nonspherical bubbles depend on the shape modes of two bubbles. When the shape mode of the first bubble is equal to that of the second bubble (n=m), the shape coupled mode and radial coupled mode both exist. The interaction force between bubbles is caused by these two coupled modes. If the two bubbles have different shape mode orders (n m), there is a radially coupled mode between two bubbles. The interaction force between two bubbles is caused by radially coupled mode. The interaction caused by the radial coupling and shape coupling has an influence on the instability of gas bubble. The influencing factors depend on the shape mode, the equilibrium radius of neighboring bubble, and the driving acoustic field. The results demonstrate that the shape coupling can change the severity of the collapse of a gas bubble, and increase the ability of a gas bubble to resist distortion under a certain condition. The nonspherical disturbance of a real bubble in an acoustic field is not a single shape mode, but the coupling of different shape modes, so the shape coupling has an obvious influence on the shape instability of a real bubble. These may be the reason why bubbles can form some stable structures and keep stable oscillations in an acoustic field.

Reference (22)

Catalog

    /

    返回文章
    返回