Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anisotropic polarization beam splitter based on metal slit array

Ma Jing Liu Dong-Dong Wang Ji-Cheng Feng Yan

Anisotropic polarization beam splitter based on metal slit array

Ma Jing, Liu Dong-Dong, Wang Ji-Cheng, Feng Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarizing beam splitter (PBS) can separate the propagating directions of two incident orthogonally polarized light beams. However, conventional PBS and multi-layered metamaterial structures are complicated and neither of them can meet the requirements for broadband characteristics due to their resonant characters. In this paper, an anisotropic beam splitter based on metal slit array of the metal-dielectric structure is proposed in order to simplify the structure and improve the beam splitting efficiency. Because of the transverse momentum generated by the inhomogeneous interface, the transverse magnetic (TM) wave is negatively reflected from the surface of the gold film after it has entered into the slit with the waveguide mode of the plasma. When the free electrons on the metal surface oscillate, the transverse electric (TE) wave parallel to the grating direction can cause electrons to oscillate along the grating direction, so that the TE light cannot enter into the slit, resulting in specular reflection. The finite element method is used to study the effects of TM and TE polarized light such as negative reflection (NR) and specular reflection (SR). The results show that when the incident angle of the polarized light is set to be in a range from 20 to 70, the incident TM light has a strong NR of about 0.9, but the TE light is weakly reflected and decreases sharply with the increase of the wavelength. The ideal NR points of the beam splitter and the perfect symmetrical response of the reflection surface are calculated, and the ideal NR point satisfies P=/(2sin 0). When the incident light angle changes, the variations of the wavelength of the negative and zero order reflection peak are different from those of TM and TE wave, which is more conducive to the tuning of the interaction between light and grating structure. The NR and SR spectral reflectance of different polarized light beams are calculated by rigorous coupled-wave analysis, and the extinction ratios in the two cases are both 106. In addition, those designs of plasmonic splitters will pave the way for the practical applications of plasmonic devices in data storages and optical holography.
      Corresponding author: Wang Ji-Cheng, jcwang@jiangnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504139), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140167), the National Postdoctoral Science Foundation of China (Grant No. 2017M611693), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB140016), and the Open Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K201802).
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095

    [3]

    Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59

    [4]

    Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903

    [5]

    Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [8]

    Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 物理学报 66 070704]

    [9]

    Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247

    [10]

    Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559

    [11]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104205]

    [12]

    Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316

    [13]

    Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535

    [14]

    Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [15]

    Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [16]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [17]

    Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1

    [18]

    Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205

    [19]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [20]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099

    [21]

    Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 物理学报 59 4030]

    [22]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [23]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [24]

    Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095

    [3]

    Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59

    [4]

    Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903

    [5]

    Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [8]

    Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 物理学报 66 070704]

    [9]

    Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247

    [10]

    Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559

    [11]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104205]

    [12]

    Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316

    [13]

    Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535

    [14]

    Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [15]

    Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [16]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [17]

    Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1

    [18]

    Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205

    [19]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [20]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099

    [21]

    Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 物理学报 59 4030]

    [22]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [23]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [24]

    Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]

  • [1] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [2] Zhu Guang-Xi, Huang De-Xiu, Zhang Xin-Liang, Li Pei-Li. Wavelength converter based on cross-gain modulation in multi-electrode single-port-coupled semiconductor optical amplifier. Acta Physica Sinica, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [3] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [4] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [5] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [6] Song Guo-Feng, Zhang Yu, Guo Bao-Shan, Wang Wei-Min. Single mode vertical-cavity surface emitting laser with surface plasmon nanostructure. Acta Physica Sinica, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [7] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [8] Hong Xia, Guo Xiong-Bin, Fang Xu, Li Kan, Ye Hui. Design of silicon based germanium metal-semiconductor-metal photodetector enhanced by surface plasmon resonance. Acta Physica Sinica, 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
    [9] Ling Jin-Zhong, Huang Yuan-Shen, Wang Zhong-Fei, Wang Qi, Zhang Da-Wei, Zhuang Song-Lin. Research on the characteristics of tunable structure nanowire-grid polarizer. Acta Physica Sinica, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [10] Zhu Gui-Xin, Yu Tian-Bao, Chen Shu-Wen, Shi Zhe, Hu Shu-Juan, Lai Zhen-Quan, Liao Qing-Hua, Huang Yong-Zhen. A new way of uniform splitting of the optical power by directional coupling between the photonic crystal waveguides. Acta Physica Sinica, 2009, 58(2): 1014-1019. doi: 10.7498/aps.58.1014
    [11] Yang Dan-Qing, Wang Li, Wang Xin-Long. Research on far-field enhanced imaging based on negative reflection of periodic structure. Acta Physica Sinica, 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [12] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [13] Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian. All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model. Acta Physica Sinica, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [14] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [15] Hua Lei, Song Guo-Feng, Guo Bao-Shan, Wang Wei-Min, Zhang Yu. Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons. Acta Physica Sinica, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [16] Wang Ling-Ling, Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [17] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [18] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [19] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [20] Huang Qian, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying, Wang Jing. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
  • Citation:
Metrics
  • Abstract views:  528
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2017
  • Accepted Date:  05 January 2018
  • Published Online:  05 May 2018

Anisotropic polarization beam splitter based on metal slit array

    Corresponding author: Wang Ji-Cheng, jcwang@jiangnan.edu.cn
  • 1. Department of Opto-electronical Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China;
  • 2. School of Mathematics and Physics Science, Xuzhou University of Technology, Xuzhou 221018, China;
  • 3. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11504139), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140167), the National Postdoctoral Science Foundation of China (Grant No. 2017M611693), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB140016), and the Open Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K201802).

Abstract: Polarizing beam splitter (PBS) can separate the propagating directions of two incident orthogonally polarized light beams. However, conventional PBS and multi-layered metamaterial structures are complicated and neither of them can meet the requirements for broadband characteristics due to their resonant characters. In this paper, an anisotropic beam splitter based on metal slit array of the metal-dielectric structure is proposed in order to simplify the structure and improve the beam splitting efficiency. Because of the transverse momentum generated by the inhomogeneous interface, the transverse magnetic (TM) wave is negatively reflected from the surface of the gold film after it has entered into the slit with the waveguide mode of the plasma. When the free electrons on the metal surface oscillate, the transverse electric (TE) wave parallel to the grating direction can cause electrons to oscillate along the grating direction, so that the TE light cannot enter into the slit, resulting in specular reflection. The finite element method is used to study the effects of TM and TE polarized light such as negative reflection (NR) and specular reflection (SR). The results show that when the incident angle of the polarized light is set to be in a range from 20 to 70, the incident TM light has a strong NR of about 0.9, but the TE light is weakly reflected and decreases sharply with the increase of the wavelength. The ideal NR points of the beam splitter and the perfect symmetrical response of the reflection surface are calculated, and the ideal NR point satisfies P=/(2sin 0). When the incident light angle changes, the variations of the wavelength of the negative and zero order reflection peak are different from those of TM and TE wave, which is more conducive to the tuning of the interaction between light and grating structure. The NR and SR spectral reflectance of different polarized light beams are calculated by rigorous coupled-wave analysis, and the extinction ratios in the two cases are both 106. In addition, those designs of plasmonic splitters will pave the way for the practical applications of plasmonic devices in data storages and optical holography.

Reference (24)

Catalog

    /

    返回文章
    返回