搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究

洪霞 郭雄彬 方旭 李衎 叶辉

基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究

洪霞, 郭雄彬, 方旭, 李衎, 叶辉
PDF
导出引用
导出核心图
  • 金属-半导体-金属光电探测器的光栅结构可激发表面等离子体, 有效增强探测器的吸收. 为深入研究器件结构对于表面等离子体的激发及共振增强的影响, 本文提出了一种具有超薄有源层的硅基锗金属-半导体-金属光电探测器的设计方法. 采用时域有限差分的方法详细分析了光栅周期、光栅厚度、 光栅间距及有源层厚度对于表面等离子体共振增强器件性能的影响, 通过仿真模拟获得了器件的最佳结构, 详细地分析了各个界面激发的表面等离子体及其共振模式对于光谱吸收增强的机理. 仿真结果表明, 有源层锗的厚度为400nm的超薄器件在通信波段具有较高的吸收, 尤其在1550nm波长处器件的归一化的光谱吸收率可以高达53.77%, 增强因子达7.22倍. 利用共振效应能够极大地提高高速器件的光电响应, 为解决光电探测器响应度与响应速度之间的相互制约关系提供了有效途径.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB6321040);浙江省自然科学基金(批准号: LZ12F04002);浙江省科技计划(批准号: 2011F20021)和浙江大学现代光学仪器国家重点实验室项目(批准号: moi2010021)资助的课题.
    [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Huang Z H 2006 Ph.D. Dissertation (Texas: The University of Texas at Austin)

    [3]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol.1) (New York: Academic) pp467-568

    [4]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [5]

    Schuller J A, Barnard E S, CAI W, Jun Y C, White J S, Brongersma M I 2010 Nat. Mat. 9 193

    [6]

    Schaadt D, Feng B, Yu E 2005 Appl. Phys. Lett. 80 063106

    [7]

    Tang L, Kocabas S E, Latif S, Okyay A K, Sebastien D, Gagnon L, Saraswat K C, Miller D A B 2008 Nat. Photon. 2 226

    [8]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [9]

    Das N, Karar A, Vasiliev M, Tan C L, Alameh K, Lee Y T 2011 Opt. Comm. 284 1694

    [10]

    Tan C L, Lysak V V, Das N, Karar A, Alameh K, Lee Y T 2010 Proceedings of 10th IEEE Conference on the Nanotechnology (IEEE-NANO), Korea, Aug. 17-20, 2010 p849

    [11]

    Ren F F, Ang K W, Song J F, Fang Q, Yu M B, Lo G Q, Kwong D L 2010 Appl. Phys. Lett. 97 091102

    [12]

    Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289

    [13]

    Eryilmaz S B, Tidin O, Okyay A K 2012 IEEE Photon. Tech. Lett. 24 548

    [14]

    Masouleh F F, Das N, Mashayekhih R 2012 Proceedings of the Optical Interconnects Conference, New Maxico, May 20-23, 2012 p108

    [15]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 物理学报 55 3464]

    [16]

    Liu S B, Zhu C X, Yuan N C 2006 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 物理学报 54 2804]

    [17]

    Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44-46

    [18]

    Bai W L, Guo B S, Cai L K, Gan Q Q, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰 2009 物理学报 58 8021]

    [19]

    Crouse D, Keshavareddy P 2005 Opt. Exp. 13 7760

    [20]

    White J S, Veronis G, Yu Z, Barnard E S, Chandran A, Fan S H, Brongersma M L 2009 Opt. Lett. 34 686

    [21]

    Bouchon P, Pardo F, Potirer B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109

    [22]

    Han Z, Forsberg E, He S 2007 IEEE Photon. Tech. Lett. 19 91

  • [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Huang Z H 2006 Ph.D. Dissertation (Texas: The University of Texas at Austin)

    [3]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol.1) (New York: Academic) pp467-568

    [4]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [5]

    Schuller J A, Barnard E S, CAI W, Jun Y C, White J S, Brongersma M I 2010 Nat. Mat. 9 193

    [6]

    Schaadt D, Feng B, Yu E 2005 Appl. Phys. Lett. 80 063106

    [7]

    Tang L, Kocabas S E, Latif S, Okyay A K, Sebastien D, Gagnon L, Saraswat K C, Miller D A B 2008 Nat. Photon. 2 226

    [8]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [9]

    Das N, Karar A, Vasiliev M, Tan C L, Alameh K, Lee Y T 2011 Opt. Comm. 284 1694

    [10]

    Tan C L, Lysak V V, Das N, Karar A, Alameh K, Lee Y T 2010 Proceedings of 10th IEEE Conference on the Nanotechnology (IEEE-NANO), Korea, Aug. 17-20, 2010 p849

    [11]

    Ren F F, Ang K W, Song J F, Fang Q, Yu M B, Lo G Q, Kwong D L 2010 Appl. Phys. Lett. 97 091102

    [12]

    Ren F F, Ang K W, Ye J D, Yu M B, Lo G Q, Kwong D L 2011 Nano Lett. 11 1289

    [13]

    Eryilmaz S B, Tidin O, Okyay A K 2012 IEEE Photon. Tech. Lett. 24 548

    [14]

    Masouleh F F, Das N, Mashayekhih R 2012 Proceedings of the Optical Interconnects Conference, New Maxico, May 20-23, 2012 p108

    [15]

    Yang H W, Chen R S, Zhang Y 2006 Acta Phys. Sin. 55 3464 (in Chinese) [杨宏伟, 陈如山, 张云 2006 物理学报 55 3464]

    [16]

    Liu S B, Zhu C X, Yuan N C 2006 Acta Phys. Sin. 54 2804 (in Chinese) [刘少斌, 朱传喜, 袁乃昌 2005 物理学报 54 2804]

    [17]

    Maier S A 2007 Plasmonics: fundamentals and applications (Vol.1) (New York: Springer) p44-46

    [18]

    Bai W L, Guo B S, Cai L K, Gan Q Q, Song G F 2009 Acta Phys. Sin. 58 8021 (in Chinese) [白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰 2009 物理学报 58 8021]

    [19]

    Crouse D, Keshavareddy P 2005 Opt. Exp. 13 7760

    [20]

    White J S, Veronis G, Yu Z, Barnard E S, Chandran A, Fan S H, Brongersma M L 2009 Opt. Lett. 34 686

    [21]

    Bouchon P, Pardo F, Potirer B, Ferlazzo L, Ghenuche P, Dagher G, Dupuis C, Bardou N, Haïdar R, Pelouard J L 2011 Appl. Phys. Lett. 98 191109

    [22]

    Han Z, Forsberg E, He S 2007 IEEE Photon. Tech. Lett. 19 91

  • [1] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [2] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [3] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [4] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器. 物理学报, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [5] 王同标, 刘念华, 于天宝, 徐旭明, 廖清华. 含有凹口的金属纳米环形共振器的本征模式分裂. 物理学报, 2014, 63(1): 017301. doi: 10.7498/aps.63.017301
    [6] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响. 物理学报, 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [7] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [8] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [9] 王玲玲, 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [10] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [13] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [14] 黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [15] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导. 物理学报, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [16] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [17] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [18] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [19] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [20] 熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强. 基于纳米天线的多通道高强度定向表面等离子体波激发. 物理学报, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1140
  • PDF下载量:  811
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-17
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-09-05

基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究

  • 1. 浙江大学光电信息工程学系, 现代光学仪器国家重点实验室, 杭州 310027;
  • 2. 浙江省能源与核技术应用研究院, 杭州 310012
    基金项目: 

    国家重点基础研究发展计划(973计划)(批准号: 2013CB6321040)

    浙江省自然科学基金(批准号: LZ12F04002)

    浙江省科技计划(批准号: 2011F20021)和浙江大学现代光学仪器国家重点实验室项目(批准号: moi2010021)资助的课题.

摘要: 金属-半导体-金属光电探测器的光栅结构可激发表面等离子体, 有效增强探测器的吸收. 为深入研究器件结构对于表面等离子体的激发及共振增强的影响, 本文提出了一种具有超薄有源层的硅基锗金属-半导体-金属光电探测器的设计方法. 采用时域有限差分的方法详细分析了光栅周期、光栅厚度、 光栅间距及有源层厚度对于表面等离子体共振增强器件性能的影响, 通过仿真模拟获得了器件的最佳结构, 详细地分析了各个界面激发的表面等离子体及其共振模式对于光谱吸收增强的机理. 仿真结果表明, 有源层锗的厚度为400nm的超薄器件在通信波段具有较高的吸收, 尤其在1550nm波长处器件的归一化的光谱吸收率可以高达53.77%, 增强因子达7.22倍. 利用共振效应能够极大地提高高速器件的光电响应, 为解决光电探测器响应度与响应速度之间的相互制约关系提供了有效途径.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回