Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of novel two-stage optical receiving antenna for indoor visible light communication technology

Peng Xing Kong Ling-Bao

Design and analysis of novel two-stage optical receiving antenna for indoor visible light communication technology

Peng Xing, Kong Ling-Bao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • White light emitting diode has become the next generation of light source because of its high illuminance efficiency, low power consumption, and long life, and it has also been adopted in the application of indoor visible light communication (VLC) system. The VLC has great development potentials, however, there is a lack of research on optical receiving antenna which is a key component of VLC. Therefore, in this paper we design a novel two-stage optical receiving antenna for indoor VLC system. In the designed antenna, the lens wall of a compound parabolic concentrator with a certain rotation angle and thickness is obtained through rotating the parabolic reflector cross-section reference curve. Furthermore, a novel two-stage optical receiving antenna is designed by taking advantage of lens-wall compound parabolic concentrators and hemispherical lenses. This significantly increases the view angle by nearly 20 in the case of gain retention. The analytical model of the optical antenna in a 5 m5 m3 m open room is established by using a software of TraceProTM. The indoor VLC system is also modelled and implemented by using a software of MatlabTM. The results show that the growth rate of average received power is 757.2%, which is 5.62 times that of the compound parabolic concentrator, and the signal-noise-ratio is increased by 28.07%, on average, which is 1.67 times that of the compound parabolic concentrator. The optical gain of the two-stage optical receiving antenna is 11.49, which is 2.81 times that of the compound parabolic concentrator. The spot radius is only 2.5 mm, which is reduced by nearly 37.5% compared with the spot radius of the compound parabolic concentrator, and the energy concentration is evenly distributed at the same time. This further confirms that the designed two-stage optical receiving antenna is suitable for indoor VLC system. Finally, the performance analysis and experimental verification of the new two-stage optical receiver antenna are also given.
      Corresponding author: Kong Ling-Bao, lkong@fudan.edu.cn
    • Funds: Project supported by the Shanghai Science and Technology Committee Innovation Grand, China (Grant No. 17JC1400601).
    [1]

    Dupuis R D, Krames M R 2008 J. Lightwave Technol. 26 1154

    [2]

    Kwonhyung L, Hyuncheol P, Barry J R 2011 IEEE Commun. Lett. 15 217

    [3]

    Hoa Le M, Dominic O, Grahame F, Lubin Z, Kyungwoo L, Daekwang J, YunJe O 2008 IEEE Photon. Technol. Lett. 20 1243

    [4]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [5]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [6]

    Vucic J, Kottke C, Nerreter S, Langer K D, Walewski J W 2010 J. Lightwave Technol. 28 3512

    [7]

    Jae H C, Sung W K, Jin Y K 2009 The 9th International Symposium Communications and Information Technology London, England, September 28-30, 2009 p1247

    [8]

    Wang Y, Lan T, Ni G Q 2017 Acta Phys. Sin. 66 084207 (in Chinese) [王云, 蓝天, 倪国强 2017 物理学报 66 084207]

    [9]

    Afgani M Z, Haas H, Elgala H, Knipp D 2006 IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities Barcelona Spain, March 1-3, 2006 p134

    [10]

    Cui L, Tang Y, Zhu Q W, Luo J B, Hu S S 2016 Acta Phys. Sin. 65 094208 (in Chinese) [崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊 2016 物理学报 65 094208]

    [11]

    Hashemi S, Ghassemlooy Z, Chao L, Benhaddou D 2008 IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (CNSDSP) Graz, July 25, 2008 p174

    [12]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [13]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [14]

    Yun W, Tian L, Ni G Q 2016 Appl. Opt. 55 10229

    [15]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 Appl. Opt. 29 98 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 98]

    [16]

    Wang Y, Lan T, Li X, Shen Z M, Ni G Q 2015 Acta Phys. Sin. 64 124212 (in Chinese) [王云, 蓝天, 李湘, 沈振民, 倪国强 2015 物理学报 64 124212]

    [17]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝,李戬洪 2006 能源技术 27 52]

    [18]

    Cao J 2012 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹捷 2012 硕士学位论文 (南京: 南京邮电大学)]

    [19]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [20]

    Shen Z M 2014 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 硕士学位论文 (北京: 北京理工大学)]

    [21]

    Toshihiko K, Masao N 2004 IEEE Trans. Consum. Electron. 50 100

    [22]

    Shen Z M, Lan T, Wang Y, Wang L H, Ni G Q 2015 Infrared Laser Eng. 44 2496 (in Chinese) [沈振民, 蓝天, 王云, 王龙辉, 倪国强 2015 红外与激光工程 44 2496]

    [23]

    Liang W, Li X B, Chong W C, Liu Z J, Che F Y, Hussain B, La K M 2015 2015 Symposium on VLSI Circuits Digest of Technical Papers Kyoto, Japan, June 17-19, 2015 C328

    [24]

    Ding J P 2013 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [丁举鹏 2013 博士学位论文 (北京: 北京邮电大学)]

    [25]

    Yu B Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [余冰雁 2015 博士学位论文 (北京: 清华大学)]

    [26]

    Gao M G, Lan T, Zhao T, Zhang Y L, Cui Z H, Ni G Q 2015 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing Beijing, China, May 17-19, 2015 p961901

    [27]

    Zhang T 2016 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张天 2016 博士学位论文 (长春: 吉林大学)]

    [28]

    Yang C Y, Yang J, Yang Z W, Hou J, Chen S P 2016 J. Optoelectron. Lasers 27 491 (in Chinese) [杨春勇, 杨杰, 杨振威, 候金, 陈少平 2016 光电子激光 27 491]

    [29]

    Chen Q F 2014 M. S. Dissertation (Zhengzhou: Information Engineering University) (in Chinese) [陈庆峰 2014 硕士学位论文 (郑州: 解放军信息工程大学)]

  • [1]

    Dupuis R D, Krames M R 2008 J. Lightwave Technol. 26 1154

    [2]

    Kwonhyung L, Hyuncheol P, Barry J R 2011 IEEE Commun. Lett. 15 217

    [3]

    Hoa Le M, Dominic O, Grahame F, Lubin Z, Kyungwoo L, Daekwang J, YunJe O 2008 IEEE Photon. Technol. Lett. 20 1243

    [4]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [5]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [6]

    Vucic J, Kottke C, Nerreter S, Langer K D, Walewski J W 2010 J. Lightwave Technol. 28 3512

    [7]

    Jae H C, Sung W K, Jin Y K 2009 The 9th International Symposium Communications and Information Technology London, England, September 28-30, 2009 p1247

    [8]

    Wang Y, Lan T, Ni G Q 2017 Acta Phys. Sin. 66 084207 (in Chinese) [王云, 蓝天, 倪国强 2017 物理学报 66 084207]

    [9]

    Afgani M Z, Haas H, Elgala H, Knipp D 2006 IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities Barcelona Spain, March 1-3, 2006 p134

    [10]

    Cui L, Tang Y, Zhu Q W, Luo J B, Hu S S 2016 Acta Phys. Sin. 65 094208 (in Chinese) [崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊 2016 物理学报 65 094208]

    [11]

    Hashemi S, Ghassemlooy Z, Chao L, Benhaddou D 2008 IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (CNSDSP) Graz, July 25, 2008 p174

    [12]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [13]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [14]

    Yun W, Tian L, Ni G Q 2016 Appl. Opt. 55 10229

    [15]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 Appl. Opt. 29 98 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 98]

    [16]

    Wang Y, Lan T, Li X, Shen Z M, Ni G Q 2015 Acta Phys. Sin. 64 124212 (in Chinese) [王云, 蓝天, 李湘, 沈振民, 倪国强 2015 物理学报 64 124212]

    [17]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝,李戬洪 2006 能源技术 27 52]

    [18]

    Cao J 2012 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹捷 2012 硕士学位论文 (南京: 南京邮电大学)]

    [19]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [20]

    Shen Z M 2014 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 硕士学位论文 (北京: 北京理工大学)]

    [21]

    Toshihiko K, Masao N 2004 IEEE Trans. Consum. Electron. 50 100

    [22]

    Shen Z M, Lan T, Wang Y, Wang L H, Ni G Q 2015 Infrared Laser Eng. 44 2496 (in Chinese) [沈振民, 蓝天, 王云, 王龙辉, 倪国强 2015 红外与激光工程 44 2496]

    [23]

    Liang W, Li X B, Chong W C, Liu Z J, Che F Y, Hussain B, La K M 2015 2015 Symposium on VLSI Circuits Digest of Technical Papers Kyoto, Japan, June 17-19, 2015 C328

    [24]

    Ding J P 2013 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [丁举鹏 2013 博士学位论文 (北京: 北京邮电大学)]

    [25]

    Yu B Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [余冰雁 2015 博士学位论文 (北京: 清华大学)]

    [26]

    Gao M G, Lan T, Zhao T, Zhang Y L, Cui Z H, Ni G Q 2015 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing Beijing, China, May 17-19, 2015 p961901

    [27]

    Zhang T 2016 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张天 2016 博士学位论文 (长春: 吉林大学)]

    [28]

    Yang C Y, Yang J, Yang Z W, Hou J, Chen S P 2016 J. Optoelectron. Lasers 27 491 (in Chinese) [杨春勇, 杨杰, 杨振威, 候金, 陈少平 2016 光电子激光 27 491]

    [29]

    Chen Q F 2014 M. S. Dissertation (Zhengzhou: Information Engineering University) (in Chinese) [陈庆峰 2014 硕士学位论文 (郑州: 解放军信息工程大学)]

  • [1] Wang Yun, Lan Tian, Li Xiang, Shen Zhen-Min, Ni Guo-Qiang. Design research and performance analysis of compound parabolic concentrators as optical antennas in visible light communication. Acta Physica Sinica, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [2] Zhang Yi-Lun, Lan Tian, Gao Ming-Guang, Zhao Tao, Shen Zhen-Min. Design of two-cascade optical antenna for indoor visible light communication. Acta Physica Sinica, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [3] Li Xiang, Lan Tian, Wang Yun, Wang Long-Hui. Design and study of Fresnel lens for an antenna in indoor visible light communication system. Acta Physica Sinica, 2015, 64(2): 024201. doi: 10.7498/aps.64.024201
    [4] Cui Lu, Tang Yi, Zhu Qing-Wei, Luo Jia-Bin, Hu Shan-Shan. Analysis of channel crosstalk in muliti-spectrum visible light communication system. Acta Physica Sinica, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [5] Mu Ting-Kui, Zhang Chun-Min, Ren Wen-Yi, Zhang Lin, Zhu Bao-Hui. Design and analysis of a polarization interference imaging spectrometer with expanded field of view. Acta Physica Sinica, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [6] Zhu Zhong-Kui, Lou Chun-Rong, Zhao Xiao-Peng. A novel microstrip antenna with dendritic-structured negative permeability metamaterials. Acta Physica Sinica, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [7] Xu Quan, Xie Kang, Ran Ying-Hua, Yang Hua-Jun, Huang Jin. Properties of Cassegrain optical antenna with inclined optical axis. Acta Physica Sinica, 2009, 58(2): 946-951. doi: 10.7498/aps.58.946
    [8] Bao Shi, Luo Chun-Rong, Zhao Xiao-Peng. S-wave band microstrip antenna with perfect absorbing metamaterial substrate. Acta Physica Sinica, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [9] Xu Yue-Min, Chen Cheng, Zhao Guo-Wei. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [10] Zheng Kui-Song, Wu Chang-Ying, Wan Guo-Bin, Wei Gao. Implementation of two-element antenna array with right/left-handed transmission line metamaterials. Acta Physica Sinica, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [11] Zhao Jian-Sen, Zhang Zhi-Tao, Wang Jian, Yu Zhe. A U-shape plasma antenna based on excitation of 5—20 kHz alternating current power supply. Acta Physica Sinica, 2012, 61(19): 195201. doi: 10.7498/aps.61.195201
    [12] Hu Xiao-Peng, Zhu Shi-Ning, Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [13] Yang He-Run, Hu Bi-Tao, Duan Li-Min, Xu Hu-Shan, Li Chun-Yan, Li Zu-Yu, Zhang Xiao-Dong. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [14] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [16] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [17] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [18] Shao Gong-Wang, Dai Ya-Jun, Jin Guo-Liang. Overlap factor between intensity profiles of signal and pump light and gain characteristics of Er-doped waveguide amplifier. Acta Physica Sinica, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [19] Wang Yun, Lan Tian, Ni Guo-Qiang. Design and analysis of composite optical receiver for indoor visible light communication. Acta Physica Sinica, 2017, 66(8): 084207. doi: 10.7498/aps.66.084207
    [20] Zhang Yu-Lian, Qi Hui-Rong, Hu Bi-Tao, Wen Zhi-Wen, Wang Hai-Yun, Ouyang Qun, Chen Yuan-Bo, Zhang Jian. Measurement and simulation of the hybrid structure gaseous detector gain. Acta Physica Sinica, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
  • Citation:
Metrics
  • Abstract views:  639
  • PDF Downloads:  245
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2017
  • Accepted Date:  04 December 2017
  • Published Online:  05 May 2018

Design and analysis of novel two-stage optical receiving antenna for indoor visible light communication technology

    Corresponding author: Kong Ling-Bao, lkong@fudan.edu.cn
  • 1. Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China
Fund Project:  Project supported by the Shanghai Science and Technology Committee Innovation Grand, China (Grant No. 17JC1400601).

Abstract: White light emitting diode has become the next generation of light source because of its high illuminance efficiency, low power consumption, and long life, and it has also been adopted in the application of indoor visible light communication (VLC) system. The VLC has great development potentials, however, there is a lack of research on optical receiving antenna which is a key component of VLC. Therefore, in this paper we design a novel two-stage optical receiving antenna for indoor VLC system. In the designed antenna, the lens wall of a compound parabolic concentrator with a certain rotation angle and thickness is obtained through rotating the parabolic reflector cross-section reference curve. Furthermore, a novel two-stage optical receiving antenna is designed by taking advantage of lens-wall compound parabolic concentrators and hemispherical lenses. This significantly increases the view angle by nearly 20 in the case of gain retention. The analytical model of the optical antenna in a 5 m5 m3 m open room is established by using a software of TraceProTM. The indoor VLC system is also modelled and implemented by using a software of MatlabTM. The results show that the growth rate of average received power is 757.2%, which is 5.62 times that of the compound parabolic concentrator, and the signal-noise-ratio is increased by 28.07%, on average, which is 1.67 times that of the compound parabolic concentrator. The optical gain of the two-stage optical receiving antenna is 11.49, which is 2.81 times that of the compound parabolic concentrator. The spot radius is only 2.5 mm, which is reduced by nearly 37.5% compared with the spot radius of the compound parabolic concentrator, and the energy concentration is evenly distributed at the same time. This further confirms that the designed two-stage optical receiving antenna is suitable for indoor VLC system. Finally, the performance analysis and experimental verification of the new two-stage optical receiver antenna are also given.

Reference (29)

Catalog

    /

    返回文章
    返回