搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析

王云 蓝天 李湘 沈振民 倪国强

复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析

王云, 蓝天, 李湘, 沈振民, 倪国强
PDF
导出引用
导出核心图
  • 针对室内可见光通信的特点, 选择复合抛物面聚光器作为可见光通信系统光学天线, 介绍了复合抛物面聚光器的几何结构和光学特性, 利用光学仿真软件 TracePro对复合抛物面聚光器进行了设计、建模与仿真. 通过对不同光源条件下复合抛物面聚光器聚光特性的仿真发现: 在光源为朗伯辐射模型时复合抛物面聚光器的聚光性能更好, 且视场角越小增益越高; 但接收端与光源的相对位置对小视场复合抛物面聚光器的实际增益有明显影响, 在仿真条件下, 视场角为10°的复合抛物面聚光器实际增益为22.88, 比理论值降低了31%. 在此基础上, 在一个5 m×5 m×3 m的房间中对采用复合抛物面聚光器为光学天线的室内可见光通信系统进行了建模, 分别得到了直射链路和非直射链路下房间内各个位置的光功率分布. 仿真结果表明, 采用一个视场角为60°的复合抛物面聚光器为光学天线, 两种链路下平均接收功率分别提高了4.29 dBm和4.77 dBm, 非直射链路比直射链路的平均接收功率提高了11.2%.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB329202)资助的课题.
    [1]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [2]

    Li P L, Yang Z P, Wang Z J, Guo Q L 2008 Chin. Phys. B 17 1907

    [3]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [4]

    Ran Y H, Yang H J, Xu Q, Xie K, Huang J 2009 Acta Phys. Sin. 58 946 (in Chinese) [冉英华, 杨华军, 徐权, 谢康, 黄金 2009 物理学报 58 946]

    [5]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [6]

    Winston R, Hinterberger H 1975 Sol. Energy 17 255

    [7]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝, 李戬洪 2006 能源技术 27 52]

    [8]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 J. Appl. Opt. 29 198 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 198]

    [9]

    Miąno J C, Gonílez J C, Benítez P 1995 Appl. Opt. 34 7850

    [10]

    Zhang H, Wang Y P, Zhu L, Sun Y 2013 Acta Energ. Sol. Sin. 34 1882 (in Chinese) [张辉, 王一平, 朱丽, 孙勇 2013 太阳能学报 34 1882]

    [11]

    Burton A, Ghassemlooy Z, Rajbhandari S, Liaw S K 2014 Trans. Emerg. Telecommun. Technol. 25 591

    [12]

    Kong M M, Liang Z C, Zhang G H 2012 Inf. Laser Eng. 41 750 (in Chinese) [孔梅梅, 梁忠诚, 张国虎 2012 红外与激光工程 41 750]

    [13]

    Winston R, Mińano J C, Benitez P 2005 Nonimaging Optics (New York: Academic Press) pp50-65

    [14]

    Ma M, Zheng H F, Li J C 2011 Solar Energy 7 33 (in Chinese) [马鸣, 郑宏飞, 李家春 2011 太阳能 7 33]

    [15]

    Ding J J, Liu Z W, Xu K, Lou Y Y, Chen R S 2010 Syst. Eng. Electron. 32 2309 (in Chinese) [丁建军, 刘志伟, 徐侃, 娄瑜雅, 陈如山 2010 系统工程与电子技术 32 2309]

    [16]

    An Y Y, Fan Z H, Ding D Z, Chen R S 2014 Appl. Comput. Electrom. 29 279

    [17]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

  • [1]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [2]

    Li P L, Yang Z P, Wang Z J, Guo Q L 2008 Chin. Phys. B 17 1907

    [3]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [4]

    Ran Y H, Yang H J, Xu Q, Xie K, Huang J 2009 Acta Phys. Sin. 58 946 (in Chinese) [冉英华, 杨华军, 徐权, 谢康, 黄金 2009 物理学报 58 946]

    [5]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [6]

    Winston R, Hinterberger H 1975 Sol. Energy 17 255

    [7]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝, 李戬洪 2006 能源技术 27 52]

    [8]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 J. Appl. Opt. 29 198 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 198]

    [9]

    Miąno J C, Gonílez J C, Benítez P 1995 Appl. Opt. 34 7850

    [10]

    Zhang H, Wang Y P, Zhu L, Sun Y 2013 Acta Energ. Sol. Sin. 34 1882 (in Chinese) [张辉, 王一平, 朱丽, 孙勇 2013 太阳能学报 34 1882]

    [11]

    Burton A, Ghassemlooy Z, Rajbhandari S, Liaw S K 2014 Trans. Emerg. Telecommun. Technol. 25 591

    [12]

    Kong M M, Liang Z C, Zhang G H 2012 Inf. Laser Eng. 41 750 (in Chinese) [孔梅梅, 梁忠诚, 张国虎 2012 红外与激光工程 41 750]

    [13]

    Winston R, Mińano J C, Benitez P 2005 Nonimaging Optics (New York: Academic Press) pp50-65

    [14]

    Ma M, Zheng H F, Li J C 2011 Solar Energy 7 33 (in Chinese) [马鸣, 郑宏飞, 李家春 2011 太阳能 7 33]

    [15]

    Ding J J, Liu Z W, Xu K, Lou Y Y, Chen R S 2010 Syst. Eng. Electron. 32 2309 (in Chinese) [丁建军, 刘志伟, 徐侃, 娄瑜雅, 陈如山 2010 系统工程与电子技术 32 2309]

    [16]

    An Y Y, Fan Z H, Ding D Z, Chen R S 2014 Appl. Comput. Electrom. 29 279

    [17]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1533
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-08
  • 修回日期:  2014-12-18
  • 刊出日期:  2015-06-05

复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析

  • 1. 北京理工大学光电学院, 光电成像技术与系统教育部重点实验室, 精密光电测试仪器及技术北京市重点实验室, 北京 100081
    基金项目: 

    国家重点基础研究发展计划(批准号:2013CB329202)资助的课题.

摘要: 针对室内可见光通信的特点, 选择复合抛物面聚光器作为可见光通信系统光学天线, 介绍了复合抛物面聚光器的几何结构和光学特性, 利用光学仿真软件 TracePro对复合抛物面聚光器进行了设计、建模与仿真. 通过对不同光源条件下复合抛物面聚光器聚光特性的仿真发现: 在光源为朗伯辐射模型时复合抛物面聚光器的聚光性能更好, 且视场角越小增益越高; 但接收端与光源的相对位置对小视场复合抛物面聚光器的实际增益有明显影响, 在仿真条件下, 视场角为10°的复合抛物面聚光器实际增益为22.88, 比理论值降低了31%. 在此基础上, 在一个5 m×5 m×3 m的房间中对采用复合抛物面聚光器为光学天线的室内可见光通信系统进行了建模, 分别得到了直射链路和非直射链路下房间内各个位置的光功率分布. 仿真结果表明, 采用一个视场角为60°的复合抛物面聚光器为光学天线, 两种链路下平均接收功率分别提高了4.29 dBm和4.77 dBm, 非直射链路比直射链路的平均接收功率提高了11.2%.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回