搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法

王云新 李虹历 王大勇 李静楠 钟欣 周涛 杨登才 戎路

引用本文:
Citation:

基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法

王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路

Dual-parallel Mach-Zehnder modulator based microwave photonic down-conversion link with high dynamic range

Wang Yun-Xin, Li Hong-Li, Wang Da-Yong, Li Jing-Nan, Zhong Xin, Zhou Tao, Yang Deng-Cai, Rong Lu
PDF
导出引用
  • 为了提高微波光子下变频链路的性能,提出了基于集成双平行马赫-曾德尔调制器的微波光子下变频方法.通过理论推导和数值仿真分析了系统的增益和无杂散动态范围,实验搭建了基于双平行马赫-曾德尔调制器的下变频链路,控制直流偏置电压使双平行马赫-曾德尔调制器工作在高载波抑制的双边带调制模式,并对链路进行了性能测试.实验结果表明:该下变频链路的增益为7.43 dB,无杂散动态范围达到了110.85 dB/Hz2/3,工作频段可覆盖518 GHz的宽频范围.基于双平行马赫-曾德尔调制器的下变频方法可优化设计输出频谱,系统结构简单、易于实现,为微波光子下变频链路提供了有效的解决方案.
    With the rapid development of the microwave photonic communication technology, the frequency of the microwave signal is expanded to the Ka waveband, since most of low frequency bands are occupied. However, the current commercial detectors and signal processing modules are limited by bandwidth. Therefore, the traditional method of directly detecting the microwave signals cannot meet the actual demands. It is essential to achieve the microwave photonic down-conversion from the high frequency microwave signal (~10 GHz) to the lower frequency signal (~100 MHz). Meanwhile, the down-conversion low frequency signal can be processed by the existing mature technology and low cost devices. The microwave down-conversion link can effectively avoid leaking the local oscillator, and it possesses many advantages such as high bandwidth and spurious free dynamic range, low loss and low noise. In this paper, a microwave photonic down-conversion system is presented based on the integrated dual-parallel Mach-Zehnder modulator (DPMZM) to increase the spurious-free dynamic range as well as conversion efficient of microwave photonic link. The integrated DPMZM is mainly comprised of two intensity modulators (MZM-a and MZM-b), and a phase shifter. The radio frequency (RF) signal is loaded into DPMZM to modulate the optical signal. The local oscillator is loaded into the MZM-a to produce the 1st local oscillator sideband, and two RF signals are fed to the MZM-b to form the 1st RF signal sideband. The direct current bias of the DPMZM is adjusted to output a high carrier suppressed double sideband (DSB) signal. The erbium-doped fiber amplifier is used to increase the power of light to match the power range of the detector. The RF signal sideband and local oscillator sideband are mixed to produce the beat frequency, and the frequency down-conversion can be achieved. The principle of frequency down-conversion is elaborated by theoretical analysis. The conversion efficiency and spurious free dynamic range are analyzed and simulated. On this basis, the microwave photonic link of frequency down-conversion is built. The performance of the system is tested. The ratio of optical carrier power to sideband power of the DSB signal is 26 dB. The experimental result shows that the conversion efficiency is 7.43 dB and spurious-free dynamic range is 110.85 dB/Hz2/3. The down-conversion method based on the DPMZM can optimize the output spectrum of the sideband. The structure of system is simple and easy to implement, so it is a good option for improving the conversion efficiency and spurious-free dynamic range.
      通信作者: 王大勇, wdyong@bjut.edu.cn;zhj_zht@163.com ; 周涛, wdyong@bjut.edu.cn;zhj_zht@163.com
    • 基金项目: 国家自然科学基金(批准号:61372061,51477028,61475011)资助的课题.
      Corresponding author: Wang Da-Yong, wdyong@bjut.edu.cn;zhj_zht@163.com ; Zhou Tao, wdyong@bjut.edu.cn;zhj_zht@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372061, 51477028, 61475011).
    [1]

    Minasian R A 2006 IEEE Trans. Microw. Theory Tech. 54 832

    [2]

    Thomas V A, EI-Hajjar M, Hanzo L 2016 IET Commun. 10 534

    [3]

    Jia Z S, Yu J J, Chang G K 2006 IEEE Photon. Technol. Lett. 18 1726

    [4]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla L, Sales S, Thevenaz L, Capmany L 2010 IEEE Photon. Technol. Lett. 22 1753

    [5]

    Kazaura K, Wakamori K, Matsumoto M, Higashino T, Tsukamoto K, Komaki S 2010 IEEE Commun. Mag. 48 130

    [6]

    Nguyen L V T 2009 IEEE Photon. Technol. Lett. 21 642

    [7]

    Lasri J, Shtaif M, Eisenstein G, Avrutin E A, Koren U 1998 J. Lightwave Technol. 16 443

    [8]

    Li Y F, Wang R Y, Herczfeld P, Klamkin J, Johansson L, Bowers J 2009 IEEE MTT-S International Microwave Symposium Boston, USA, June 7-12, 2009 p153

    [9]

    Chen Y S, Zhang C, Hong C, Li M J, Zhu L X, Hu W W, Chen Z Y 2009 14th Opto. Electronics and Communication Conference Hong Kong, China, July 13-17, 2009 p556

    [10]

    Torres-Company V, Leaird D E, Weiner A M 2012 Opt. Lett. 37 3993

    [11]

    Wang J J, Chen M H, Liang Y H, Chen H W, Yang S G, Xie S Z 2014 IEEE Microwave Photonics(MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP) Sapporo, Japan, October 20-23, 2014 p222

    [12]

    Tang Z Z, Zhang F Z, Pan S L 2014 Opt. Express 22 305

    [13]

    Howerton M M, Moeller R P, Gopalakrishnan G K, Burns W K 1996 IEEE Photon. Technol. Lett. 8 1692

    [14]

    Gopalakrishnan G K, MoellerR P, Howerton M M, Burns W K, Williams K J, Esman R D 1995 IEEE Trans. Microw. Theory Tech. 43 2318

    [15]

    Hass B M, Murphy T E 2011 IEEE Photon. J. 3 1

    [16]

    Pagan V R, Haas B M, Murphy T E 2011 Opt. Express 19 883

    [17]

    Li P X, Pan W, Zou X H, Pan S L, Luo B, Yan L S 2015 IEEE Photon. J. 7 5500907

    [18]

    Sun J L, Yu L, Zhong Y P 2015 Opt. Commun. 336 315

    [19]

    Jiang T W, Yu S, Wu R H, Wang D S, Gu W Y 2016 Opt. Lett. 41 2640

    [20]

    Erwin H W Chan, Robert A M 2012 J. Lightwave Technol. 30 3580

    [21]

    Ali A, Erwin H W Chan, Robert A M 2014 Appl. Opt. 53 3687

    [22]

    Gao Y S, Wen A, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11

    [23]

    Huang L, Li R M, Chen D L, Xiang P, Wang P, Pu T, Chen X F 2016 IEEE Photon. Technol. Lett. 28 880

  • [1]

    Minasian R A 2006 IEEE Trans. Microw. Theory Tech. 54 832

    [2]

    Thomas V A, EI-Hajjar M, Hanzo L 2016 IET Commun. 10 534

    [3]

    Jia Z S, Yu J J, Chang G K 2006 IEEE Photon. Technol. Lett. 18 1726

    [4]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla L, Sales S, Thevenaz L, Capmany L 2010 IEEE Photon. Technol. Lett. 22 1753

    [5]

    Kazaura K, Wakamori K, Matsumoto M, Higashino T, Tsukamoto K, Komaki S 2010 IEEE Commun. Mag. 48 130

    [6]

    Nguyen L V T 2009 IEEE Photon. Technol. Lett. 21 642

    [7]

    Lasri J, Shtaif M, Eisenstein G, Avrutin E A, Koren U 1998 J. Lightwave Technol. 16 443

    [8]

    Li Y F, Wang R Y, Herczfeld P, Klamkin J, Johansson L, Bowers J 2009 IEEE MTT-S International Microwave Symposium Boston, USA, June 7-12, 2009 p153

    [9]

    Chen Y S, Zhang C, Hong C, Li M J, Zhu L X, Hu W W, Chen Z Y 2009 14th Opto. Electronics and Communication Conference Hong Kong, China, July 13-17, 2009 p556

    [10]

    Torres-Company V, Leaird D E, Weiner A M 2012 Opt. Lett. 37 3993

    [11]

    Wang J J, Chen M H, Liang Y H, Chen H W, Yang S G, Xie S Z 2014 IEEE Microwave Photonics(MWP) and the 2014 9th Asia-Pacific Microwave Photonics Conference (APMP) Sapporo, Japan, October 20-23, 2014 p222

    [12]

    Tang Z Z, Zhang F Z, Pan S L 2014 Opt. Express 22 305

    [13]

    Howerton M M, Moeller R P, Gopalakrishnan G K, Burns W K 1996 IEEE Photon. Technol. Lett. 8 1692

    [14]

    Gopalakrishnan G K, MoellerR P, Howerton M M, Burns W K, Williams K J, Esman R D 1995 IEEE Trans. Microw. Theory Tech. 43 2318

    [15]

    Hass B M, Murphy T E 2011 IEEE Photon. J. 3 1

    [16]

    Pagan V R, Haas B M, Murphy T E 2011 Opt. Express 19 883

    [17]

    Li P X, Pan W, Zou X H, Pan S L, Luo B, Yan L S 2015 IEEE Photon. J. 7 5500907

    [18]

    Sun J L, Yu L, Zhong Y P 2015 Opt. Commun. 336 315

    [19]

    Jiang T W, Yu S, Wu R H, Wang D S, Gu W Y 2016 Opt. Lett. 41 2640

    [20]

    Erwin H W Chan, Robert A M 2012 J. Lightwave Technol. 30 3580

    [21]

    Ali A, Erwin H W Chan, Robert A M 2014 Appl. Opt. 53 3687

    [22]

    Gao Y S, Wen A, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11

    [23]

    Huang L, Li R M, Chen D L, Xiang P, Wang P, Pu T, Chen X F 2016 IEEE Photon. Technol. Lett. 28 880

  • [1] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计. 物理学报, 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [2] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响. 物理学报, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] 张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建. 基于复合结构的气体电子倍增器增益模拟和实验研究. 物理学报, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [4] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [5] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [6] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [7] 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究. 物理学报, 2013, 62(22): 224210. doi: 10.7498/aps.62.224210
    [8] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [9] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [10] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [11] 张帆, 李林, 马晓辉, 李占国, 隋庆学, 高欣, 曲轶, 薄报学, 刘国军. InGaAs/GaAs应变量子阱激光器线宽展宽因子的理论研究. 物理学报, 2012, 61(5): 054209. doi: 10.7498/aps.61.054209
    [12] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [13] 张丹, 王兆明, 王艳双, 薄淑辉, 甄珍, 张大明. LaF3∶Er,Yb纳米颗粒掺杂有机/无机杂化材料制备光波导放大器及特性研究. 物理学报, 2009, 58(3): 1675-1678. doi: 10.7498/aps.58.1675
    [14] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [15] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [16] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [17] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [18] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [19] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [20] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究. 物理学报, 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
计量
  • 文章访问数:  5992
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-09
  • 修回日期:  2017-01-30
  • 刊出日期:  2017-05-05

/

返回文章
返回