Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization-dependent nonlinear optical response in GeSe2

Ouyang Hao Hu Si-Yang Shen Man-Ling Zhang Chen-Xi Cheng Xiang-Ai Jiang Tian

Citation:

Polarization-dependent nonlinear optical response in GeSe2

Ouyang Hao, Hu Si-Yang, Shen Man-Ling, Zhang Chen-Xi, Cheng Xiang-Ai, Jiang Tian
PDF
HTML
Get Citation
  • Germanium diselenide (GeSe2), a layered IV-VI semiconductor, has an in-plane anisotropic structure and a wide band gap, exhibiting unique optical, electrical, and thermal properties. In this paper, polarization axis Raman spectrum and linear absorption spectrum are used to characterize the crystal axis orientation and energy band characteristics of GeSe2 flake, respectively. Based on the results, a micro-domain I scan system is used to study the optical nonlinear absorption mechanism of GeSe2 near the resonance band. The results show that the nonlinear absorption mechanism in GeSe2 is a superposition of saturation absorption and excited state absorption, and is strongly dependent on the polarization and wavelength of incident light. Under near-resonance excitation (450 nm), the excited state absorption is more greatly dependent on polarization. With different polarizations of incident light, the modulation depth can be changed from 4.6% to 9.9%; for non-resonant excitation (400 nm), the modulation depth only changes from 7.0% to 9.7%. At the same time, compared with saturation absorption, the polarization-dependent excited state absorption is greatly affected by the distance away from the resonance excitation wavelength.
      Corresponding author: Jiang Tian, tjiang@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11802339, 11805276, 61805282, 61801498, 11804387, 11902358), the Scientific Researches Foundation of National University of Defense Technology, China (Grant Nos. ZK16-03-59, ZK18-01-03, ZK18-03-36, ZK18-03-22), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ1021), the Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2018ZR05), the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology, China (Grant No. GNJGJS03), the Opening Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1702), and the Youth Talent Lifting Project, China (Grant No. 17-JCJQ-QT-004)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotechnol. 9 825Google Scholar

    [3]

    Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X, Jiang T 2018 Opt. Lett. 43 243Google Scholar

    [4]

    Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y, Zhao H 2012 Phys. Rev. B 86 045406Google Scholar

    [5]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [6]

    Hu Y, Jiang T, Zhou J, Hao H, Sun H, Ouyang H, Tong M, Tang Y, Li H, You J, Zheng X, Xu Z, Cheng X 2019 Nano Energy 68 104280Google Scholar

    [7]

    Tang Y, Zhang Y, Ouyang H, Zhao M, Hao H, Wei K, Li H, Sui Y, You J, Zheng X, Xu Z, Cheng X, Shi L, Jiang T 2020 Laser Photonics Rev. 1900419Google Scholar

    [8]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [9]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

    [10]

    Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C X, Xin Z, Wang Z Y, Cheng X a 2018 Photonics Res. 6 14Google Scholar

    [11]

    Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z, Cheng X A 2019 Chin. Opt. Lett. 17 020005Google Scholar

    [12]

    刘畅, 刘祥瑞 2019 物理学报 68 175Google Scholar

    Liu C, Liu X R 2019 Acta Phys. Sin. 68 175Google Scholar

    [13]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [14]

    Youngblood N, Peng R, Nemilentsau A, Low T, Li M 2016 ACS Photonics 4 8Google Scholar

    [15]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S-T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [16]

    Bao Q, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [19]

    Yang Y, Wang X, Liu S C, Li Z, Sun Z, Hu C, Xue D J, Zhang G, Hu J S 2019 Adv. Sci. 6 1801810Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y, Ji J, Zhang M, Fan D, Zhang H 2017 ACS Photonics 4 1466Google Scholar

    [22]

    Tan D Z, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W J, Miyauchi Y H, Ohfuchi M, Matsuda K 2016 Nano Res. 10 546Google Scholar

    [23]

    黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花 2016 物理学报 65 063102Google Scholar

    Huang D H, Wan M J, Wang F H, Yang J S, Cao Q L, Wang J H 2016 Acta Phys. Sin. 65 063102Google Scholar

    [24]

    Zhang C X, Ouyang H, Miao R L, Sui Y Z, Hao H, Tang Y X, You J, Zheng X, Xu Z J, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [25]

    Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F 2015 ACS Photonics 3 96Google Scholar

    [26]

    Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P, Wang H 2015 Nano Res. 8 3651Google Scholar

    [27]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [28]

    Villegas C E P, Rocha A R, Marini A 2016 Phys. Rev. B 94 134306Google Scholar

    [29]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [30]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Castro Neto A H 2016 Phys. Rev. B 94 155428Google Scholar

    [31]

    魏钟鸣, 夏建白 2019 物理学报 68 48Google Scholar

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 48Google Scholar

    [32]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [33]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [34]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1900622Google Scholar

    [35]

    Cao M, Cheng B, Xiao L, Zhao J, Su X, Xiao Y, Lei S 2015 J. Mater. Chem. C 3 5207Google Scholar

    [36]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [37]

    Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, Wang Y, Jiang C, Wei S-H, Huang L, Huang Y, Duan X 2017 Nano Res. 11 554Google Scholar

    [38]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350Google Scholar

    [39]

    Zhang S, Dong N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C, Li Y, Zhang X, Chen Z, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [40]

    刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 704Google Scholar

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 704Google Scholar

    [41]

    Meng X, Zhou Y, Chen K, Roberts R H, Wu W, Lin J F, Chen R T, Xu X, Wang Y 2018 Adv. Opt. Mater. 6 1800137Google Scholar

    [42]

    Chen H, Wang C, Ouyang H, Song Y, Jiang T 2020 NanophotonicsGoogle Scholar

    [43]

    Wang K, Chen Y, Zheng J, Ge Y, Ji J, Song Y, Zhang H 2019 Nanotechnol. 30 415202Google Scholar

    [44]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J, Ji J, Zhang H 2018 Adv. Opt. Mater. 6 1701287Google Scholar

  • 图 1  (a) GeSe2原子结构示意图; (b) 机械剥离GeSe2纳米片的AFM图, 样品的厚度为88 nm; (c) 偏振选择的拉曼光谱, 其中4个拉曼峰位置分别在118, 212, 251, 307 cm–1; (d)—(g) 4个拉曼峰强度分别对应的极坐标示意图

    Figure 1.  (a) Schematic diagram of the atomic structure of GeSe2; (b) AFM image of GeSe2 flake by mechanical exfoliation. The thickness of the sample is 88 nm; (c) polarization-dependent Raman spectrum. Four Raman peak positions are at 118, 212, 251, 307 cm–1, respectively; (d)–(g) polar diagrams of the intensity of the four Raman peaks.

    图 2  线性吸收谱对层状GeSe2的各向异性能带表征 (a) 0°—180°偏振方向的线性吸收谱, 其中间隔15°; (b) 0°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.717 eV; (c) 90°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.7291 eV; (d) 层状GeSe2的各向异性能带; b轴方向上的带隙最大, 而a轴方向的带隙最小; (e) 层状GeSe2在400 nm处的各向异性线性吸收率极坐标图; (f) 层状GeSe2在450 nm处的各向异性线性吸收率极坐标图

    Figure 2.  Characterization of anisotropic bands of layered GeSe2 by linear absorption spectrum: (a) Linear absorption spectrum with polarization directions from 0° to 180° with intervals of 15°; (b) the energy band of the 0° polarization direction is determined. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.717 eV; (c) determination of the energy band of the 90° polarization direction. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.7291 eV; (d) anisotropic energy bands of layered GeSe2. The band gap in the b-axis direction is the largest, and the band gap in the a-axis direction is the smallest; (e) polar graph of anisotropic linear absorptivity of layered GeSe2 at 400 nm; (f) polar graph of anisotropic linear absorption of layered GeSe2 at 450 nm.

    图 3  400 nm非共振激发下不同偏振方向的叠加态吸收实验结果 (a) I扫描实验结果, 圆圈表示实验数据, 实线表示激发态吸收拟合曲线; (b) 偏振相关的非线性调制深度极坐标图; (c) 偏振相关的线性吸收系数α0变化趋势极坐标图; (d) 偏振相关饱和吸收光强I1,s极坐标图; (e) 偏振相关的激发态吸收系数β0变化趋势极坐标图; (f) 激发态吸收的偏振相关饱和光强I2,s极坐标图

    Figure 3.  Experimental results of superposition state absorption of different polarization directions under 400 nm non-resonant excitation: (a) Results of the I-scan experiment. The circles indicate the experimental data, and the solid lines indicate the excited state absorption curve; (b) polarization-dependent non-linear modulation depth polar plot; (c) polar plot of the change in polarization-dependent linear absorption coefficient α0; (d) polarization diagram of polarization-dependent saturated absorption intensity I1,s; (e) polarization diagram of the polarization-dependent excited state absorption coefficient β0; (f) polarized graph of polarization-dependent saturation light intensity I2,s absorbed by the excited state.

    图 4  450 nm近共振激发下不同偏振方向的叠加态吸收实验结果 (a) I扫描实验结果, 圆圈表示实验数据, 实线表示激发态吸收拟合曲线; (b) 偏振相关的非线性调制深度极坐标图; (c) 偏振相关的线性吸收系数α0变化趋势极坐标图; (d) 饱和吸收的偏振相关饱和光强I1,s极坐标图; (e) 偏振相关的激发态吸收系数β0变化趋势极坐标图; (f) 激发态吸收的偏振相关饱和光强I2,s极坐标图

    Figure 4.  Experimental results of superposition state absorption of different polarization directions under 450 nm non-resonant excitation: (a) Results of the I-scan experiment. The circles indicate the experimental data, and the solid lines indicate the excited state absorption curve: (b) polarization-dependent non-linear modulation depth polar plot: (c) polar plot of the change in polarization-dependent linear absorption coefficient α0; (d) polarization diagram of polarization-dependent saturated absorption intensity I1,s; (e) polarization diagram of the polarization-dependent excited state absorption coefficient β0; (f) polarized graph of polarization-dependent saturation light intensity I2,s absorbed by the excited state.

    图 5  GeSe2偏振型全光开关的原理示意图

    Figure 5.  Schematic diagram of GeSe2 based polarized-dependent all-optical switching

    表 1  400 nm非共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果

    Table 1.  Fitting results of I-scan nonlinear superposition state absorption parameters related to 400 nm non-resonant excitation polarization

    Polarization/(°)α0/cm–1β0/cm·GW–1I1,s/GW·cm–2I2,s/GW·cm–2δT/%
    03155950815947417.0
    30335935597962387.5
    6036579606972358.2
    9038790663349349.7
    120369725991394368.1
    150340295436629397.3
    1803106249617082417.0
    DownLoad: CSV

    表 2  450 nm近共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果

    Table 2.  Fitting results of I-scan nonlinear superposition state absorption parameters related to 450 nm non-resonant excitation polarization

    Polarization/(°)α0/cm–1β0/cm·GW–1I1,s/GW·cm–2I2,s/GW·cm–2δT/%
    0439091759390634.6
    30496311571258695.6
    606028965409757.1
    906750122188799.9
    1205726681469766.8
    150483451582333685.0
    1804317317610483624.6
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotechnol. 9 825Google Scholar

    [3]

    Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X, Jiang T 2018 Opt. Lett. 43 243Google Scholar

    [4]

    Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y, Zhao H 2012 Phys. Rev. B 86 045406Google Scholar

    [5]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Ling W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [6]

    Hu Y, Jiang T, Zhou J, Hao H, Sun H, Ouyang H, Tong M, Tang Y, Li H, You J, Zheng X, Xu Z, Cheng X 2019 Nano Energy 68 104280Google Scholar

    [7]

    Tang Y, Zhang Y, Ouyang H, Zhao M, Hao H, Wei K, Li H, Sui Y, You J, Zheng X, Xu Z, Cheng X, Shi L, Jiang T 2020 Laser Photonics Rev. 1900419Google Scholar

    [8]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [9]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

    [10]

    Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C X, Xin Z, Wang Z Y, Cheng X a 2018 Photonics Res. 6 14Google Scholar

    [11]

    Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z, Cheng X A 2019 Chin. Opt. Lett. 17 020005Google Scholar

    [12]

    刘畅, 刘祥瑞 2019 物理学报 68 175Google Scholar

    Liu C, Liu X R 2019 Acta Phys. Sin. 68 175Google Scholar

    [13]

    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X 2015 Nat. Commun. 6 8572Google Scholar

    [14]

    Youngblood N, Peng R, Nemilentsau A, Low T, Li M 2016 ACS Photonics 4 8Google Scholar

    [15]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S-T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [16]

    Bao Q, Loh K P 2012 ACS Nano 6 3677Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327Google Scholar

    [19]

    Yang Y, Wang X, Liu S C, Li Z, Sun Z, Hu C, Xue D J, Zhang G, Hu J S 2019 Adv. Sci. 6 1801810Google Scholar

    [20]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [21]

    Zheng J, Yang Z, Si C, Liang Z, Chen X, Cao R, Guo Z, Wang K, Zhang Y, Ji J, Zhang M, Fan D, Zhang H 2017 ACS Photonics 4 1466Google Scholar

    [22]

    Tan D Z, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W J, Miyauchi Y H, Ohfuchi M, Matsuda K 2016 Nano Res. 10 546Google Scholar

    [23]

    黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花 2016 物理学报 65 063102Google Scholar

    Huang D H, Wan M J, Wang F H, Yang J S, Cao Q L, Wang J H 2016 Acta Phys. Sin. 65 063102Google Scholar

    [24]

    Zhang C X, Ouyang H, Miao R L, Sui Y Z, Hao H, Tang Y X, You J, Zheng X, Xu Z J, Cheng X A, Jiang T 2019 Adv. Opt. Mater. 7 1900631Google Scholar

    [25]

    Aslan O B, Chenet D A, van der Zande A M, Hone J C, Heinz T F 2015 ACS Photonics 3 96Google Scholar

    [26]

    Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P, Wang H 2015 Nano Res. 8 3651Google Scholar

    [27]

    Jang H, Ryder C R, Wood J D, Hersam M C, Cahill D G 2017 Adv. Mater. 29 1700650Google Scholar

    [28]

    Villegas C E P, Rocha A R, Marini A 2016 Phys. Rev. B 94 134306Google Scholar

    [29]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [30]

    Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S, Castro Neto A H 2016 Phys. Rev. B 94 155428Google Scholar

    [31]

    魏钟鸣, 夏建白 2019 物理学报 68 48Google Scholar

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 48Google Scholar

    [32]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [33]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [34]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1900622Google Scholar

    [35]

    Cao M, Cheng B, Xiao L, Zhao J, Su X, Xiao Y, Lei S 2015 J. Mater. Chem. C 3 5207Google Scholar

    [36]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [37]

    Yang S, Liu Y, Wu M, Zhao L D, Lin Z, Cheng H C, Wang Y, Jiang C, Wei S-H, Huang L, Huang Y, Duan X 2017 Nano Res. 11 554Google Scholar

    [38]

    Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E, Orenstein J 2016 Nat. Phys. 13 350Google Scholar

    [39]

    Zhang S, Dong N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C, Li Y, Zhang X, Chen Z, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [40]

    刘丰, 邢岐荣, 胡明列, 栗岩锋, 王昌雷, 柴路, 王清月 2011 物理学报 60 704Google Scholar

    Liu F, Xing Q R, Hu M L, Li Y F, Wang C L, Chai L, Wang Q Y 2011 Acta Phys. Sin. 60 704Google Scholar

    [41]

    Meng X, Zhou Y, Chen K, Roberts R H, Wu W, Lin J F, Chen R T, Xu X, Wang Y 2018 Adv. Opt. Mater. 6 1800137Google Scholar

    [42]

    Chen H, Wang C, Ouyang H, Song Y, Jiang T 2020 NanophotonicsGoogle Scholar

    [43]

    Wang K, Chen Y, Zheng J, Ge Y, Ji J, Song Y, Zhang H 2019 Nanotechnol. 30 415202Google Scholar

    [44]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J, Ji J, Zhang H 2018 Adv. Opt. Mater. 6 1701287Google Scholar

  • [1] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [4] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [5] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [6] Wang Ding, Zhang Mei-Gen. Elastic wave propagation characteristics under anisotropic squirt-flow condition. Acta Physica Sinica, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [7] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [8] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [9] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [10] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [12] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [15] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [16] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [18] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [19] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [20] . Acta Physica Sinica, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
Metrics
  • Abstract views:  6911
  • PDF Downloads:  262
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2020
  • Accepted Date:  11 April 2020
  • Available Online:  16 September 2020
  • Published Online:  20 September 2020

/

返回文章
返回