Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties

Kang Yu-Bin Tang Ji-Long Li Ke-Xue Li Xiang Hou Xiao-Bing Chu Xue-Ying Lin Feng-Yuan Wang Xiao-Hua Wei Zhi-Peng

Citation:

Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties

Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
HTML
Get Citation
  • GaAs-based semiconductor doping technology, in which impurity energy levels are introduced into the band gap, can give rise to a decisive effect on its electrical and optical properties. When GaAs material is reduced to one-dimensional nanoscale, due to the increase of specific surface area, wurtzite- zinc blende coexisting structure is prone to appearing. GaAs nanowire doping can not only adjust its electro-optical properties, but also have a significant regulatory effect on its structural phase transition. The effects of beryllium (Be) and silicon (Si) doping on crystal structure and optical properties of gallium arsenide (GaAs) nanowires (NWs) are studied in this paper. Primitive, Si-doped and Be-doped GaAs NWs are grown on Si(111) substrates by molecular beam epitaxy in virtue of the self-catalyzed growth mechanism. The Raman spectra of primitive, Si-doped and Be-doped GaAs NWs are measured. The E2 mode peak unique to the WZ structure of primitive GaAs NWs is found in the Raman spectrum, and the E2 mode peak in the Raman spectrum of Si-doped GaAs NWs weakens or even disappears. Moreover, The E2 mode peak is not found in the Raman spectrum of Be-doped GaAs NWs. Furthermore, the structural changes of GaAs NWs are observed more intuitively by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The PL spectra show that the wurtzite (WZ)-zinc blende (ZB) mixed phase II-type luminescence exists in primitive GaAs NWs, then the luminescence disappears due to Si or Be doping and turns into impurity defect related luminescence.
      Corresponding author: Tang Ji-Long, jl_tangcust@163.com ; Li Ke-Xue, ciomplikexue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674021, 11674038, 61704011, 61904017, 11804335, 12074045), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), the Project of Education Department of Jilin Province, China (Grant No. JJKH20200763KJ), and the Youth Foundation of Changchun University of Science and Technology, China (Grant No. XQNJJ-2018-18)
    [1]

    Kasai S, Asai T 2008 Appl. Phys. Express 1 083001Google Scholar

    [2]

    Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H, Jagadish C 2013 Nat. Photonics 7 963Google Scholar

    [3]

    Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L, Wei Z 2020 Nano Lett. 20 2654Google Scholar

    [4]

    Krogstrup P, Jørgensen H I, Heiss M, Demichel O, Holm J V, Aagesen M, Nygard J, Fontcuberta i Morral A 2013 Nat. Photonics 7 306Google Scholar

    [5]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [6]

    Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M, Johnston M B 2009 Nano Lett. 9 3349Google Scholar

    [7]

    Thelander C, Caroff P, Plissard S, Dey A W, Dick K A 2011 Nano Lett. 11 2424Google Scholar

    [8]

    Woo R L, Xiao R, Kobayashi Y, Gao L, Goel N, Hudait M K, Mallouk T E, Hicks R F 2008 Nano Lett. 8 4664Google Scholar

    [9]

    Gil E, Dubrovskii V G, Avit G, André Y, Leroux C, Lekhal K, Grecenkov J, Trassoudaine A, Castelluci D, Monier G, Ramdani R M, Robert-Goumet C, Bideux L, Harmand J C, Glas F 2014 Nano Lett. 14 3938Google Scholar

    [10]

    Lehmann S, Wallentin J, Jacobsson D, Deppert K, Dick K A 2013 Nano Lett. 13 4099Google Scholar

    [11]

    Panciera F, Baraissov Z, Patriarche G, Dubrovskii V G, Glas F, Travers L, Mirsaidov U, Harmand J C 2020 Nano Lett. 20 1669Google Scholar

    [12]

    Jacobsson D, Panciera F, Tersoff J, Reuter M C, Lehmann S, Hofmann S, Dick K A, Ross F M 2016 Nature 531 317Google Scholar

    [13]

    Dheeraj D L, Patriarche G, Zhou H, Hoang T B, Moses A F, Grønsberg S, van Helvoort A T J, Fimland B O, Weman H 2008 Nano Lett. 8 4459Google Scholar

    [14]

    Ren D D, Dheeraj D L, Jin C J, Nilsen J S, Huh J, Reinertsen J F, Munshi A M, Gustafsson A, van Helvoort A T J, Weman H, Fimland B O 2016 Nano Lett. 16 1201Google Scholar

    [15]

    Zhang Y, Sun Z, Sanchez A M, Ramsteiner M, Aagesen M, Wu J, Kim D, Jurczak P, Huo S, Lauhon L J, Liu H Y 2018 Nano Lett. 18 81Google Scholar

    [16]

    Lu Z, Zhang Z, Chen P, Shi S, Yao L, Zhou C, Zhou X, Zou J, Lu W 2014 Appl. Phys. Lett. 105 162102Google Scholar

    [17]

    Zhang Y, Fonseka H A, Aagesen M, Gott J A, Sanchez A M, Wu J, Jurczak P, Huo S, Liu H Y 2017 Nano Lett. 17 4946Google Scholar

    [18]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

    [19]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [20]

    Zardo I, Conesa-Boj S, Peiro F, Morante J R, Arbiol J, Uccelli E, Abstreiter G, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245324Google Scholar

    [21]

    Ketterer B, Heiss M, Uccelli E, Arbiol J, Fontcuberta i Morral A 2011 ACS Nano 5 7585Google Scholar

    [22]

    Ketterer B, Uccelli E, Fontcuberta i Morral A 2012 Nanoscale 4 1789Google Scholar

    [23]

    Goktas N I, Fiordaliso E M, LaPierre R R 2018 Nanotechnology 29 234001Google Scholar

    [24]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [25]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [26]

    Ge X, Wang D, Gao X, Fang X, Niu S, Gao H, Tang J, Wang X, Wei Z, Chen R 2017 Phys. Status Solidi RRL 11 1700001Google Scholar

    [27]

    Simmonds P J, Babu Laghumavarapu R, Sun M, Lin A, Reyner C J, Liang B, Huffaker D L 2012 Appl. Phys. Lett. 100 243108Google Scholar

    [28]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [29]

    Liu B, Cheng C W, Chen R, Shen Z X, Fan H J, Sun H D 2010 J. Phys. Chem. C 114 3407Google Scholar

    [30]

    Zhu L D, Chan K T, Wagner D K, Ballantyne J M 1985 J. Appl. Phys. 57 5486Google Scholar

    [31]

    Neu G, Teisseire M, Freundlich A, Horton C, Ignatiev A 1999 Appl. Phys. Lett. 74 3341Google Scholar

    [32]

    Dingle R 1969 Phys. Rev. 184 788Google Scholar

    [33]

    Hudait M K, Clavel M B, Saluru S, Liu J S, Meeker M A, Khodaparast G A, Bodnar R J 2018 AIP Adv. 8 115119Google Scholar

    [34]

    Scott G B, Duggan G, Dawson P, Weimann G 1981 J. Appl. Phys. 52 6888Google Scholar

  • 图 1  GaAs纳米线SEM侧视图 (a)本征GaAs纳米线; (b) Si掺杂GaAs纳米线; (c) Be掺杂GaAs纳米线

    Figure 1.  The side-view SEM images of GaAs NWs: (a) Intrinsic GaAs NWs; (b) Si-doped GaAs NWs; (c) Be-doped GaAs NWs.

    图 2  (a)本征, Si掺杂及Be掺杂GaAs纳米线的Raman光谱; (b)本征, (c) Si掺杂和(d) Be掺杂GaAs纳米线的多洛伦兹拟合图; (e)所有GaAs纳米线的GaAs LO与GaAs TO强度比值及GaAs LO的FWHM图

    Figure 2.  (a) The Raman spectra of intrinsic, Si-doped and Be-doped GaAs NWs; (b) intrinsic, (c) Si-doped, and (d) Be-doped GaAs NWs are fitted by multi-Lorentzian functions; (e) intensity ratio of ILO/ITO and FWHM of GaAs LO for intrinsic, Si-doped and Be-doped GaAs NWs.

    图 3  GaAs纳米线的TEM和选区电子衍射图. 本征GaAs纳米线 (a)低分辨TEM, (b)高分辨TEM及(c)对应的选区电子衍射图样; Si掺杂GaAs纳米线(d)低分辨TEM, (e)高分辨TEM及(f)对应的选区电子衍射图样; Be掺杂GaAs纳米线(g)低分辨TEM, (h)高分辨TEM及(i)对应的选区电子衍射图样

    Figure 3.  TEM and SAED of GaAs NWs: (a) Low-TEM, (b) HRTEM and (c) SAED of intrinsic GaAs NW; (d) low-TEM, (e) HRTEM and (f) SAED of Si-doped GaAs NW; (g) low-TEM, (h) HRTEM and (i) SAED of Be-doped GaAs NW.

    图 4  本征, Si掺杂和Be掺杂GaAs纳米线的低温(at 10 K)下光致发光光谱, 激发光源的功率密度为300 mW/cm2

    Figure 4.  The PL spectra of intrinsic, Si-doped and Be-doped GaAs NWs at low temperature (10 K). The power density of the excitation light source is 300 mW/cm2.

    图 5  本征GaAs纳米线光谱图 (a)本征GaAs纳米线在不同功率密度下的PL光谱曲线; (b)本征GaAs纳米线中峰P(A)和峰P(B)强度随功率密度的关系曲线; (c) P(A)和P(B)峰位和功率1/3(P1/3)的关系曲线

    Figure 5.  The PL spectra of intrinsic GaAs NWs: (a) The PL spectral curves of intrinsic GaAs NWs at different power density; (b) the relationship between peak P (A) and P (B) intensity with power density in intrinsic GaAs NWs; (c) the relationship between P(A) and P(B) peaks and P1/3.

    图 6  掺杂GaAs纳米线的光谱图 (a)不同功率密度下Si掺杂GaAs纳米线的PL光谱曲线; Si掺杂GaAs纳米线中P(C)和P(D)积分强度(b)和峰位(c)随功率密度的关系曲线; (d)不同功率密度下Be掺杂GaAs纳米线的PL光谱曲线; Be掺杂GaAs纳米线中P(E)和P(F)峰积分强度(e)和峰位(f)随功率密度的关系曲线

    Figure 6.  The PL spectra of doped GaAs NWs: (a) The PL spectral curves of Si-doped GaAs NWs at different power density; the relationship between P (C) and P (D) integral intensity (b) and peak positions (c) with power density in Si-doped GaAs NWs; (d) the PL spectral curves of Be-doped GaAs NWs at different power density; The relationship between P (E) and P (F) peak integral intensity (e) and peak positions (f) with power density in Be-doped GaAs NWs.

  • [1]

    Kasai S, Asai T 2008 Appl. Phys. Express 1 083001Google Scholar

    [2]

    Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H, Jagadish C 2013 Nat. Photonics 7 963Google Scholar

    [3]

    Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L, Wei Z 2020 Nano Lett. 20 2654Google Scholar

    [4]

    Krogstrup P, Jørgensen H I, Heiss M, Demichel O, Holm J V, Aagesen M, Nygard J, Fontcuberta i Morral A 2013 Nat. Photonics 7 306Google Scholar

    [5]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [6]

    Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M, Johnston M B 2009 Nano Lett. 9 3349Google Scholar

    [7]

    Thelander C, Caroff P, Plissard S, Dey A W, Dick K A 2011 Nano Lett. 11 2424Google Scholar

    [8]

    Woo R L, Xiao R, Kobayashi Y, Gao L, Goel N, Hudait M K, Mallouk T E, Hicks R F 2008 Nano Lett. 8 4664Google Scholar

    [9]

    Gil E, Dubrovskii V G, Avit G, André Y, Leroux C, Lekhal K, Grecenkov J, Trassoudaine A, Castelluci D, Monier G, Ramdani R M, Robert-Goumet C, Bideux L, Harmand J C, Glas F 2014 Nano Lett. 14 3938Google Scholar

    [10]

    Lehmann S, Wallentin J, Jacobsson D, Deppert K, Dick K A 2013 Nano Lett. 13 4099Google Scholar

    [11]

    Panciera F, Baraissov Z, Patriarche G, Dubrovskii V G, Glas F, Travers L, Mirsaidov U, Harmand J C 2020 Nano Lett. 20 1669Google Scholar

    [12]

    Jacobsson D, Panciera F, Tersoff J, Reuter M C, Lehmann S, Hofmann S, Dick K A, Ross F M 2016 Nature 531 317Google Scholar

    [13]

    Dheeraj D L, Patriarche G, Zhou H, Hoang T B, Moses A F, Grønsberg S, van Helvoort A T J, Fimland B O, Weman H 2008 Nano Lett. 8 4459Google Scholar

    [14]

    Ren D D, Dheeraj D L, Jin C J, Nilsen J S, Huh J, Reinertsen J F, Munshi A M, Gustafsson A, van Helvoort A T J, Weman H, Fimland B O 2016 Nano Lett. 16 1201Google Scholar

    [15]

    Zhang Y, Sun Z, Sanchez A M, Ramsteiner M, Aagesen M, Wu J, Kim D, Jurczak P, Huo S, Lauhon L J, Liu H Y 2018 Nano Lett. 18 81Google Scholar

    [16]

    Lu Z, Zhang Z, Chen P, Shi S, Yao L, Zhou C, Zhou X, Zou J, Lu W 2014 Appl. Phys. Lett. 105 162102Google Scholar

    [17]

    Zhang Y, Fonseka H A, Aagesen M, Gott J A, Sanchez A M, Wu J, Jurczak P, Huo S, Liu H Y 2017 Nano Lett. 17 4946Google Scholar

    [18]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

    [19]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [20]

    Zardo I, Conesa-Boj S, Peiro F, Morante J R, Arbiol J, Uccelli E, Abstreiter G, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245324Google Scholar

    [21]

    Ketterer B, Heiss M, Uccelli E, Arbiol J, Fontcuberta i Morral A 2011 ACS Nano 5 7585Google Scholar

    [22]

    Ketterer B, Uccelli E, Fontcuberta i Morral A 2012 Nanoscale 4 1789Google Scholar

    [23]

    Goktas N I, Fiordaliso E M, LaPierre R R 2018 Nanotechnology 29 234001Google Scholar

    [24]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [25]

    王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏 2019 物理学报 68 087803Google Scholar

    Wang P H, Tang J L, Kang Y B, Fang X, Fang D, Wang D, Lin F Y, Wang X H, Wei Z P 2019 Acta Phys. Sin. 68 087803Google Scholar

    [26]

    Ge X, Wang D, Gao X, Fang X, Niu S, Gao H, Tang J, Wang X, Wei Z, Chen R 2017 Phys. Status Solidi RRL 11 1700001Google Scholar

    [27]

    Simmonds P J, Babu Laghumavarapu R, Sun M, Lin A, Reyner C J, Liang B, Huffaker D L 2012 Appl. Phys. Lett. 100 243108Google Scholar

    [28]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [29]

    Liu B, Cheng C W, Chen R, Shen Z X, Fan H J, Sun H D 2010 J. Phys. Chem. C 114 3407Google Scholar

    [30]

    Zhu L D, Chan K T, Wagner D K, Ballantyne J M 1985 J. Appl. Phys. 57 5486Google Scholar

    [31]

    Neu G, Teisseire M, Freundlich A, Horton C, Ignatiev A 1999 Appl. Phys. Lett. 74 3341Google Scholar

    [32]

    Dingle R 1969 Phys. Rev. 184 788Google Scholar

    [33]

    Hudait M K, Clavel M B, Saluru S, Liu J S, Meeker M A, Khodaparast G A, Bodnar R J 2018 AIP Adv. 8 115119Google Scholar

    [34]

    Scott G B, Duggan G, Dawson P, Weimann G 1981 J. Appl. Phys. 52 6888Google Scholar

  • [1] Du An-Tian, Liu Ruo-Tao, Cao Chun-Fang, Han Shi-Xian, Wang Hai-Long, Gong Qian. Improving structure design of active region of InAs quantum dots by using InAs/GaAs digital alloy superlattice. Acta Physica Sinica, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] Wang Wei, Liu Wei, Xie Sen, Ge Hao-Ran, Ouyang Yu-Jie, Zhang Cheng, Hua Fu-Qiang, Zhang Min, Tang Xin-Feng. epitaxial growth, intrinsic point defects and electronic transport optimization of MnTe films. Acta Physica Sinica, 2022, 71(13): 137102. doi: 10.7498/aps.71.20212350
    [3] Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Crystal structure and optical properties of GaAs nanowires. Acta Physica Sinica, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [4] Yuan Hui-Bo, Li Lin, Zeng Li-Na, Zhang Jing, Li Zai-Jin, Qu Yi, Yang Xiao-Tian, Chi Yao-Dan, Ma Xiao-Hui, Liu Guo-Jun. Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires. Acta Physica Sinica, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [5] Ma Xia, Wang Jing. Study on resonance frequency of doping silicon nano-beam by theoretical model and molecular dynamics simulation. Acta Physica Sinica, 2017, 66(10): 106103. doi: 10.7498/aps.66.106103
    [6] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [7] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [8] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] Cui Jian-Gong, Zhang Xia, Yan Xin, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs nanowires by MOCVD. Acta Physica Sinica, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [11] Wan Bu-Yong, Yuan Jin-She, Feng Qing, Wang Ao. Hydrothermal synthesis of K, Na doped Cu-S nanocrystalline and effect of doping on crystal structure and performance. Acta Physica Sinica, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [12] Yang Shuang-Bo. Effect of doping concentration and doping thickness on the structure of electronic state of the Si uniformly doped GaAs quantum well. Acta Physica Sinica, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [13] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [15] Tang Jun, Liu Zhong-Liang, Ren Peng, Yao Tao, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang. Structural characterization of Mn doped SiC magnetic thin films. Acta Physica Sinica, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [16] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [17] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [18] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [19] Li Rong-Bin. Characterization of homoepitaxial and heteroepitaxial diamond films grown by chemical vapor deposition. Acta Physica Sinica, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [20] Xu Xiao-Hua, Niu Zhi-Chuan, Ni Hai-Qiao, Xu Ying-Qiang, Zhang Wei, He Zheng-Hong, Han Qin, Wu Rong-Han, Jiang De-Sheng. Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum well grown by molecular beam epitaxy. Acta Physica Sinica, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
Metrics
  • Abstract views:  4428
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2021
  • Accepted Date:  25 May 2021
  • Available Online:  07 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回