Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation

Zhang Jie-Fang Yu Ding-Guo Jin Mei-Zhen

Citation:

Self-similar transformation and excitation of rogue waves for (2+1)-dimensional Zakharov equation

Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen
PDF
HTML
Get Citation
  • The search for the excitation of two-dimensional rogue wave in a (2+1)-dimensional nonlinear evolution model is a research hotspot. In this paper, the self-similar transformation of the (2+1)-dimensional Zakharov equation is established, and this equation is transformed into the (1+1)-dimensional nonlinear Schrödinger equation. Based on the similarity transformation and the rational formal solution of the (1+1)-dimensional nonlinear Schrödinger equation, the rogue wave excitation of the (2+1)-dimensional Zakharov equation is obtained by selecting appropriate parameters. We can see that the shape and amplitude of the rogue waves can be effectively controlled. Finally, the propagation characteristics of line rogue waves are diagrammed visually. We also find that the line-type characteristics of two-dimensional rogue wave are present in the x-y plane when the parameter $ \gamma = 1 $. The line rogue wave is converted into discrete localized rogue wave in the x-y plane when the parameter $ \gamma \ne 1 $. The spatial localized rogue waves with short-life can be obtained in the required x-y plane region. This is similar to the Peregrine soliton (PS) first discovered by Peregrine in the (1+1)-dimensional NLS equation, which is the limit case of the “Kuznetsov-Ma soliton” (KMS) or “Akhmediev breather” (AB). The proposed approach to constructing the line rogue waves of the (2+1) dimensional Zakharov equation can serve as a potential physical mechanism to excite two-dimensional rogue waves, and can be extended to other (2+1)-dimensional nonlinear systems.
      Corresponding author: Zhang Jie-Fang, Zhangjief@cuz.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61877053).
    [1]

    Divinsky B V, Levin B V, Lopatukhin L I, Pelinovsky E N, Slyunyaev A V 2004 Dokl. Earth Sci. 395 438

    [2]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [3]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [4]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [5]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [6]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [7]

    Stenfl L, Marklund M 2010 J. Plasm. Phys. 76 293Google Scholar

    [8]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [9]

    Müller P, Garrett C, Osborne A 2005 Oceanography 18 66Google Scholar

    [10]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [11]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov Deglin P V, McClintock E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [12]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [13]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [14]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [15]

    Pu J C, Li J, Chen Y 2021 Chin. Phys. B 30 060202Google Scholar

    [16]

    Zhou H J, Chen Y 2021 Nonlinear. Dynam. 106 3437Google Scholar

    [17]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [18]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [19]

    Peregrine D H 1983 J. Aust. Math. Soc. Ser. B:Appl. Math. 25 16Google Scholar

    [20]

    Akhmediev N, Ankiewicz A, Soto Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [21]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [22]

    张解放, 金美贞, 胡文成 2020 物理学报 69 244205Google Scholar

    Zhang J F, Jin M Z, Hu W C 2020 Acta Phys. Sin. 69 244205Google Scholar

    [23]

    张解放, 金美贞 2020 物理学报 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [24]

    Zakharov V E (edited by Bullough R, Caudrey P) 1980 The Inverse Scattering Method (Vol. 17) (Berlin: Springer) pp243–285 DOI: 10.1007/978-3-642-81448-8_7

    [25]

    Radha R, Lakshmanan M 1994 Inverse Problems 10 L29Google Scholar

    [26]

    Strachan I A B 1992 Inverse Problems 8 L21Google Scholar

    [27]

    Radha R, Lakshmanan M 1997 J. Phys. A:Math. Gen. 30 3229Google Scholar

    [28]

    沈守枫, 张隽 2008 应用数学和力学 29 1254Google Scholar

    Shen S F, Zhang J 2008 Appl. Math. Mech. 29 1254Google Scholar

    [29]

    Wang J, Chen L W, Liu C F 2014 Appl. Math. Comput. 249 76

    [30]

    程丽, 张翼 2016 长江大学学报(自科版) 13 35

    Chen L, Zhang Y 2016 J. Yangtze Univ. (Nat. Sci. Ed.) 13 35 (in Chinese)

    [31]

    Wang X B, Tian S F, Zhang T T 2018 Proceedings of Roceedings of the American Society 146 3353Google Scholar

    [32]

    Chen M D, Li B 2017 Modern Phys. Lett. B 31 1750298

    [33]

    Fokas A S 1994 Inverse Problems 10 19Google Scholar

    [34]

    Chen J C, Chen Y 2014 J. Nonlinear Math. Phys. 21 454

    [35]

    Radha R, Lakshmanan M 1997 Chaos, Solitons and Fractals 8 17Google Scholar

    [36]

    Villarroel J, Prada J, Estévez P G 2009 Stud. Appl. Math. 122 395Google Scholar

    [37]

    Estévez P G 1999 J. Math. Phys. 40 1406Google Scholar

    [38]

    Rao J G, Wang L H, Zhang Y, He J S 2015 Commun. Theor. Phys. 64 605Google Scholar

    [39]

    Chen T T, Hu P Y, He J S 2019 Commun. Theor. Phys. 71 496Google Scholar

    [40]

    Rao J G, Mihalacheb D, Cheng Y, He J S 2019 Phys. Lett. A 383 1138Google Scholar

  • 图 1  传播距离$ z = - 3, 0, 1 $时一阶线怪波$ \left| u \right| $ (a), (b), (c) 三维图; (d), (e), (f) 对应x-y面上的投影图; (a), (d) A = 1.45; (b), (e) A = 4.24; (c), (f) A = 1.71

    Figure 1.  One-order line rogue wave$ \left| u \right| $respectively at the propagation distance $ z = - 3, 0, 1 $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 1.45; (b), (e) A = 4.24; (c), (f) A = 1.71.

    图 2  传播距离$ z = - 3, 0, 1 $时二阶线怪波$ \left| u \right| $ (a), (b), (c)三维图; (d), (e), (f) 对应x-y面上的投影图; (a), (d) A = 1.58; (b), (e) A = 7.32; (c), (f) A=1.93

    Figure 2.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance $ z = - 3, 0, 1 $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 1.58; (b), (e) A = 7.32; (c), (f) A = 1.93.

    图 3  传播距离$ z = - 3, 0, {\text{ 2}} $时二阶线怪波$ \left| u \right| $ (a), (b), (c) 三维图; (d), (e), (f) 对应x-y面上的投影图; (a), (d) A = 1.52; (b), (e) A = 3.99; (c), (f) A = 1.69; 参数$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = \delta = 0, \mu = 100 $

    Figure 3.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance$ z = - 3, 0, {\text{ 2}} $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 1.52; (b), (e) A = 3.99; (c), (f) A = 1.69; the parameters are$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = \delta = {\text{0, }} $$ \mu = 100 $.

    图 4  传播距离$ z = - {\text{1}}{\text{.5, }} - 0.{\text{635}}, {\text{ 0}}{\text{.5}} $时二阶线怪波簇$ \left| u \right| $ (a), (b), (c) 三维图; (d), (e), (f) 对应x-y面上的投影图; (a), (d) A = 1.80; (b), (e) A = 5.81; (c), (f) A = 2.23; 参数$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = \mu = 0, \delta = 100 $

    Figure 4.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance$ z = - {\text{1}}{\text{.5, }} - 0.{\text{635}}, {\text{ 0}}{\text{.5}} $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 1.80; (b), (e) A = 5.81; (c), (f) A=2.23; the parameters are$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = \mu = 0, \delta = 100 $.

    图 5  传播距离$ z = 0{, }0.{\text{5, 1}}{\text{.0}} $时二阶线怪波簇$ \left| u \right| $ (a), (b), (c)三维图; (d), (e), (f) 对应x-y面上的投影图; (a), (d) A = 2.76; (b), (e) A = 4.36; (c), (f) A = 2.78; 参数$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = 0, \mu = 40, \delta = 20 $

    Figure 5.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance$ z = 0{, }0.{\text{5, 1}}{\text{.0}} $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 2.76; (b), (e) A = 4.36; (c), (f) A = 2.78; the parameters are$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = 0, \mu = 40, \delta = 20 $.

    图 6  (a), (b), (c)传播距离$ z = - {\text{1, }}0.{\text{29}}, 1{\text{.5}} $时二线怪波簇$ \left| u \right| $x-y平面上的三维图; (d), (e), (f)对应的投影图; (a), (d) A = 2.76; (b), (e) A = 4.53; (c), (f) A = 1.72; 参数$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = 0, \mu = 20, \delta = - 20 $

    Figure 6.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance$ z = - {\text{1, }}0.{\text{29}}, 1{\text{.5}} $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A=2.76; (b), (e) A = 4.53; (c), (f) A = 1.72; the parameters are$ {w}_{0}=\gamma ={\beta }_{0}=1, {\varsigma }_{0}={\zeta }_{0}={\phi }_{0}=\text{0, } $$ \mu = 20, \delta = - 20 $.

    图 7  传播距离$ z = - {\text{1}}{\text{.5, }} - 0.{\text{295, 1}} $时二阶线怪波簇$ \left| u \right| $ (a), (b), (c) 三维图; (d), (e), (f)对应x-y面上的投影图; (a), (d) A = 1.72; (b), (e) A = 4.39; (c), (f) A = 2.39; 参数$ {w_0} = \gamma = {\beta _0} = 1, {\varsigma _0} = {\zeta _0} = {\varphi _0} = {\text{0, }} $$ \mu = - 20, \delta = 20 $

    Figure 7.  Two-order line rogue wave$ \left| u \right| $respectively at the propagation distance $ z = - {\text{1}}{\text{.5, }} - 0.{\text{295, 1}} $: (a), (b), (c) Three-dimensional plots; (d), (e), (f) the corresponding contour plots in the x-y plane; (a), (d) A = 1.72; (b), (e) A = 4.39; (c), (f) A = 2.39; the parameters are$ {w}_{0}=\gamma ={\beta }_{0}=1, \text{ }{\varsigma }_{0}={\zeta }_{0}={\phi }_{0}=\text{0, } $$ \mu = - 20, \delta = 20 $.

    图 8  $ z = 0 $时, 一阶线怪波$ \left| u \right| $x-y平面上不同参数$ \gamma $下的形态 (a) $ \gamma = 1 $; (b) $ \gamma = {\text{3}} $; (c) $ \gamma = {\text{6}} $; (d) $ \gamma = {\text{10}} $; (e) $ \gamma = {\text{15}} $; (f) $ \gamma = {\text{2}}0 $

    Figure 8.  One-order rogue wave$ \left| u \right| $in the x-y plane under the different$ \gamma $at the propagation distance$ z = 0 $: (a) $ \gamma = 1 $; (b) $ \gamma = {\text{3}} $; (c) $ \gamma = {\text{6}} $; (d) $ \gamma = {\text{10}} $; (e) $ \gamma = {\text{15}} $; (f) $ \gamma = {\text{2}}0 $.

  • [1]

    Divinsky B V, Levin B V, Lopatukhin L I, Pelinovsky E N, Slyunyaev A V 2004 Dokl. Earth Sci. 395 438

    [2]

    Onorato M, Osborne A R, Serio M, Bertone S 2001 Phys. Rev. Lett. 86 5831Google Scholar

    [3]

    Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V, Tarakanov V P 2017 Phys. Rev. Lett. 119 034801Google Scholar

    [4]

    Akhmediev N, Dudley J M, Solli D R, Turitsyn S K 2013 J. Opt. 15 060201Google Scholar

    [5]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [6]

    Moslem W M 2011 Phys. Plasm. 18 032301Google Scholar

    [7]

    Stenfl L, Marklund M 2010 J. Plasm. Phys. 76 293Google Scholar

    [8]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [9]

    Müller P, Garrett C, Osborne A 2005 Oceanography 18 66Google Scholar

    [10]

    Hohmann R, Kuhl U, Stockmann H J, Kaplan L, Heller E J 2010 Phys. Rev. Lett. 104 093901Google Scholar

    [11]

    Ganshin A N, Efimov V B, Kolmakov G V, Mezhov Deglin P V, McClintock E 2008 Phys. Rev. Lett. 101 065303Google Scholar

    [12]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [13]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [14]

    Xia H, Maimbourg T, Punzmann H, Shats M 2012 Phys. Rev. Lett. 109 114502Google Scholar

    [15]

    Pu J C, Li J, Chen Y 2021 Chin. Phys. B 30 060202Google Scholar

    [16]

    Zhou H J, Chen Y 2021 Nonlinear. Dynam. 106 3437Google Scholar

    [17]

    Solli R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [18]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [19]

    Peregrine D H 1983 J. Aust. Math. Soc. Ser. B:Appl. Math. 25 16Google Scholar

    [20]

    Akhmediev N, Ankiewicz A, Soto Crespo J M 2009 Phys. Rev. E 80 026601Google Scholar

    [21]

    Kedziora D J, Ankiewicz A, Akhmediev N 2012 Phys. Rev. E 86 056602Google Scholar

    [22]

    张解放, 金美贞, 胡文成 2020 物理学报 69 244205Google Scholar

    Zhang J F, Jin M Z, Hu W C 2020 Acta Phys. Sin. 69 244205Google Scholar

    [23]

    张解放, 金美贞 2020 物理学报 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [24]

    Zakharov V E (edited by Bullough R, Caudrey P) 1980 The Inverse Scattering Method (Vol. 17) (Berlin: Springer) pp243–285 DOI: 10.1007/978-3-642-81448-8_7

    [25]

    Radha R, Lakshmanan M 1994 Inverse Problems 10 L29Google Scholar

    [26]

    Strachan I A B 1992 Inverse Problems 8 L21Google Scholar

    [27]

    Radha R, Lakshmanan M 1997 J. Phys. A:Math. Gen. 30 3229Google Scholar

    [28]

    沈守枫, 张隽 2008 应用数学和力学 29 1254Google Scholar

    Shen S F, Zhang J 2008 Appl. Math. Mech. 29 1254Google Scholar

    [29]

    Wang J, Chen L W, Liu C F 2014 Appl. Math. Comput. 249 76

    [30]

    程丽, 张翼 2016 长江大学学报(自科版) 13 35

    Chen L, Zhang Y 2016 J. Yangtze Univ. (Nat. Sci. Ed.) 13 35 (in Chinese)

    [31]

    Wang X B, Tian S F, Zhang T T 2018 Proceedings of Roceedings of the American Society 146 3353Google Scholar

    [32]

    Chen M D, Li B 2017 Modern Phys. Lett. B 31 1750298

    [33]

    Fokas A S 1994 Inverse Problems 10 19Google Scholar

    [34]

    Chen J C, Chen Y 2014 J. Nonlinear Math. Phys. 21 454

    [35]

    Radha R, Lakshmanan M 1997 Chaos, Solitons and Fractals 8 17Google Scholar

    [36]

    Villarroel J, Prada J, Estévez P G 2009 Stud. Appl. Math. 122 395Google Scholar

    [37]

    Estévez P G 1999 J. Math. Phys. 40 1406Google Scholar

    [38]

    Rao J G, Wang L H, Zhang Y, He J S 2015 Commun. Theor. Phys. 64 605Google Scholar

    [39]

    Chen T T, Hu P Y, He J S 2019 Commun. Theor. Phys. 71 496Google Scholar

    [40]

    Rao J G, Mihalacheb D, Cheng Y, He J S 2019 Phys. Lett. A 383 1138Google Scholar

  • [1] Yang Li-Xia, Liu Chao, Li Qing-Liang, Yan Yu-Bo. Electromagnetic wave propagation characteristics of oblique incidence nonlinear ionospheric Langmuir disturbance. Acta Physica Sinica, 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [2] Zhang Jie-Fang, Yu Ding-Guo, Jin Mei-Zhen. Two-dimensional self-similarity transformation theory and line rogue waves excitation. Acta Physica Sinica, 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [3] Zhang Jie-Fang, Jin Mei-Zhen, Hu Wen-Cheng. Self-similarity transformation and two-dimensional rogue wave construction of non-autonomous Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [4] Zhang Wen-Ling, Ma Song-Hua, Chen Jing-Jing. Complex wave solutions and localized excitations of (2+1)-dimensional korteweg-de Vries system. Acta Physica Sinica, 2014, 63(8): 080506. doi: 10.7498/aps.63.080506
    [5] Lin Fu-Zhong, Ma Song-Hua. New exact solutions and complex wave excitations for the (2+1)-dimensional dispersive long wave equation. Acta Physica Sinica, 2014, 63(4): 040508. doi: 10.7498/aps.63.040508
    [6] Yin Jun-Yi. New infinite sequence complexion soliton-like solutions of (2+1)-dimensional Zakharov-Kuznetsov modified equal width equation. Acta Physica Sinica, 2014, 63(23): 230202. doi: 10.7498/aps.63.230202
    [7] Ouyang Cheng, Shi Lan-Fang, Lin Wan-Tao, Mo Jia-Qi. Perturbation method of travelling wave solution for (2+1) dimensional disturbed time delay breaking solitary wave equation. Acta Physica Sinica, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [8] Yang Zheng, Ma Song-Hua, Fang Jian-Ping. Exact solutions and soliton structures of (2+1)-dimensionalZakharov-Kuznetsov equation. Acta Physica Sinica, 2011, 60(4): 040508. doi: 10.7498/aps.60.040508
    [9] Liao Long-Guang, Fu Hong, Fu Xiu-Jun. Self-similar transformation and quasi-unit cell construction of quasi-periodic structure with twelve-fold rotational symmetry. Acta Physica Sinica, 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [10] Wu Yong-Qi. A new periodic wave solution for the (2+1)-dimensional Boussinesq equation. Acta Physica Sinica, 2008, 57(9): 5390-5394. doi: 10.7498/aps.57.5390
    [11] Wang Yue-Yue, Yang Qin, Dai Chao-Qing, Zhang Jie-Fang. Solitary wave solution of Zakharov equation with quantum effect. Acta Physica Sinica, 2006, 55(3): 1029-1034. doi: 10.7498/aps.55.1029
    [12] Zeng Xin, Zhang Hong-Qing. New soliton-like solutions to the (2+1)-dimensional dispersive long wave equations. Acta Physica Sinica, 2005, 54(2): 504-510. doi: 10.7498/aps.54.504
    [13] He Bao-Gang, Xu Chang-Zhi, Zhang Jie-Fang. New soliton structures in the (2+1)-dimensional nonlinear KdV equations. Acta Physica Sinica, 2005, 54(12): 5525-5529. doi: 10.7498/aps.54.5525
    [14] Zhi Hong-Yan, Wang Qi, Zhang Hong-Qing. A series of new exact solutions to the (2+1)-dimensional Broer-Kau-Kupershmidt equation. Acta Physica Sinica, 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [15] Zeng Xin, Zhang Hong-Qing. Backlund transformation and exact solutions for (2+1)-dimensional Boussinesq eq uation. Acta Physica Sinica, 2005, 54(4): 1476-1480. doi: 10.7498/aps.54.1476
    [16] Xu Chang-Zhi, Zhang Jie-Fang. Variable separation solution and new soliton structures in the (2+1)-dimensional nonlinear Burgers equations. Acta Physica Sinica, 2004, 53(8): 2407-2412. doi: 10.7498/aps.53.2407
    [17] Zhao Chang-Hai, Sheng Zheng-Mao. Explicit travelling wave solutions for Zakharov equations. Acta Physica Sinica, 2004, 53(6): 1629-1634. doi: 10.7498/aps.53.1629
    [18] Naranmandula, Wang Ke-Xie. Multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations and (2+1)-dimensional Broer-Kaup equations. Acta Physica Sinica, 2003, 52(7): 1565-1568. doi: 10.7498/aps.52.1565
    [19] Zhao Xi-Qiang, Tang Deng-Bin, Wang Li-Min, Zhang Yiao-Ming. Some new soliton wave solutions for (2+1)-dimensional Broer-Kaup equations. Acta Physica Sinica, 2003, 52(8): 1827-1831. doi: 10.7498/aps.52.1827
    [20] Zheng Chun-Long, Zhang Jie-Fang. . Acta Physica Sinica, 2002, 51(11): 2426-2430. doi: 10.7498/aps.51.2426
Metrics
  • Abstract views:  2682
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  23 June 2021
  • Accepted Date:  09 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回