Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and photoelectric property of large scale monolayer MoS2

Wu Peng Tan Lun Li Wei Cao Li-Wei Zhao Jun-Bo Qu Yao Li Ang

Citation:

Preparation and photoelectric property of large scale monolayer MoS2

Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang
PDF
HTML
Get Citation
  • Transition metal dichalcogenide (TMDC) monolayers exhibit enhanced electrical and optoelectrical properties, which are promising for next-generation optoelectronic devices. However, large-scale and uniform growth of TMDC monolayers with large grain size is still a considerable challenge. Presented in this work is a simple and effective approach to fabricating largescale molybdenum (MoS2) disulfide monolayers by chemical vapor deposition (CVD) method. It is found that MoS2 grows from single crystal into thin film with the increase of oxide precursor proportion. The photodetector of large scale monolayer layer MoS2 film is fabricated by depositing metal electrodes on the interdigital electrode mask through using thermal evaporation coating. Finally, the highly stable and repeatable photoelectric responses under the conditions of different voltages and different laser power are characterized under 405-nm laser excitation, with response time decreasing down to the order of milliseconds (ms). In addition, the photodetector achieves a wide spectral detection range from 405 nm to 830 nm, that is, from visible light to near-infrared light wavelength range, with optical response (R) of 291.7 mA/W and optical detection rate (D*) of 1.629×109 Jones. The monolayer MoS2 thin film photodetector demonstrated here has the advantages of low cost, feasibility of large-scale preparation, and good stability and repeatability in the wide spectrum range from visible light to near infrared light wavelength, providing the possibilities for future applications of electronic and optoelectronic devices .
      Corresponding author: Li Ang, ang.li@bjut.edu.cn
    • Funds: Project supported by the Beijing Outstanding Young Scientists Projects, China (Grant No. BJJWZYJH01201910005018) and the National Key Research and Development Program, China (Grant No. 2021YFA1200201).
    [1]

    Gao G Y, Yu J, Yang X X, Pang Y K, Zhao J, Pan C F, Sun Q J, Wang Z L 2018 Adv. Mater. 31 1806905

    [2]

    Li X F, Yang L M, Si M W, Li S C, Huang M Q, Ye P D, Wu Y Q 2015 Adv. Mater. 27 1547Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Kaushik V, Ahmad M, Agarwal K, Varandani D, Belle B D, Das P, Mehta B R 2020 J. Phys. Chem. C 124 23368Google Scholar

    [5]

    Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P, Reed R C 2017 Acta Mater. 125 156Google Scholar

    [6]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [7]

    Huang Z Z, Zhang T F, Liu J K, Zhang L H, Jin Y H, Wang J P, Jiang K, Fan S, Li Q Q 2019 ACS Appl. Electron. Mater. 1 1314Google Scholar

    [8]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [9]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [10]

    Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S, Cho J H 2016 Adv. Mater. 28 9196Google Scholar

    [11]

    Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar

    [12]

    Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, Hu W D 2021 Nat. Electron. 4 357Google Scholar

    [13]

    Wu P S, Ye L, Tong L, Wang P, Wang Y, Wang H L, Ge H N, Wang Z, Gu Y, Zhang K, Yu Y Y, Peng M, Wang F, Huang M, Zhou P, Hu W D 2022 Light Sci. Appl. 11 6Google Scholar

    [14]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [15]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [17]

    Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [20]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [21]

    Ren S, Rong P, Yu Q 2018 Ceramics Int. 44 11940Google Scholar

    [22]

    Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C 2014 Nano Lett. 14 3987Google Scholar

    [23]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [24]

    Sharma M, Singh A, Aggarwal P, Singh R 2022 ACS Omega 7 11731Google Scholar

    [25]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [26]

    Lee C H, Zhang Y, Johnson J M, Koltun R, Gambin V, Jamison J S, Myers R C, Hwang J, Rajan S 2020 Appl. Phys. Lett. 117 123102Google Scholar

    [27]

    Jie W J, Yang Z B, Zhang F, Bai G X, Leung C W, Hao J H 2017 ACS Nano 11 6950Google Scholar

    [28]

    Kodu M, Avarmaa T, Jaaniso R, Leemets K, Mändar H, Nagirnyi V 2016 Superlattices Microstruct. 98 18Google Scholar

    [29]

    Wang J, Fan L, Wang X M, Xiao T T, Peng L P, Wang X M, Yu J, Cao L H, Xiong Z W, Fu Y J, Wang C B, Shen Q, Wu W D 2019 Appl. Surf. Sci. 494 651Google Scholar

    [30]

    Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [31]

    Hu S, Wang X F, Meng L, Yan X 2017 J. Mater. Sci. 52 7215Google Scholar

    [32]

    Liu P Y, Luo T, Xing J, Xu H, Hao H Y, Liu H, Dong J J 2017 Nanoscale Res. Lett. 12 558Google Scholar

    [33]

    Li M G, Yao J D, Wu X X, Zhang S C, Xing B R, Niu X Y, Yan X Y, Yu Y, Liu Y L, Wang Y W 2020 ACS Appl. Mater. Interfaces 12 6276Google Scholar

    [34]

    Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar

    [35]

    Zhang Z W, Huang Z W, Li J, Wang D, Lin Y, Yang X D, Liu H, Liu S, Wang Y L, Li B, Duan X F, Duan X D 2022 Nat. Nanotechnol. 17 493Google Scholar

    [36]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [37]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [38]

    Di Bartolomeo A, Genovese L, Foller T, Giubileo F, Luongo G, Croin L, Liang S J, Ang L K, Schleberger M 2017 Nanotechnology 28 214002Google Scholar

    [39]

    Nie C B, Yu L Y, Wei X Z, Shen J, Lu W Q, Chen W M, Feng S L, Shi H F 2017 Nanotechnology 28 275203Google Scholar

    [40]

    Han P, St Marie L, Wang Q X, Quirk N, El Fatimy A, Ishigami M, Barbara P 2018 Nanotechnology 29 20LT01Google Scholar

    [41]

    Pak Y, Park W, Mitra S, Sasikala Devi A A, Loganathan K, Kumaresan Y, Kim Y, Cho B, Jung G Y, Hussain M M, Roqan I S 2018 Small 14 201703176

    [42]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [43]

    Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302Google Scholar

    [44]

    Li Y N, Li L N, Li S S, Sun J Y, Fang Y, Deng T 2022 ACS Omega 7 13615Google Scholar

    [45]

    Zhao T G, Guo J X, Li T T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y Y, Xu T F, Xie R Z, Gao P Q, Wang X R, Hu W D 2023 Chem. Soc. Rev. 52 1650Google Scholar

    [46]

    Suleman M, Lee S, Kim M, Nguyen V H, Riaz M, Nasir N, Kumar S, Park H M, Jung J, Seo Y 2022 ACS Omega 7 30074Google Scholar

    [47]

    Sun P, Liu Y W, Ma J, Li W, Zhang K L, Yuan Y J 2019 CrystEngComm 21 6969Google Scholar

    [48]

    Zhao T G, Zhong F, Wang S C, Wang Y K, Xu T F, Chen Y, Yu Y Y, Guo J X, Wang Z, Yu J C, Gao P Q 2022 Adv. Opt. Mater. 11 2202208

    [49]

    Sinha S, Kumar S, Arora SK, Sharma A, Tomar M, Wu H C, Gupta V 2021 J. Appl. Phys. 129 155304Google Scholar

  • 图 1  (a) CVD生长单层MoS2薄膜实验装置示意图; (b)化学反应区放大图; (c) CVD生长过程温度曲线

    Figure 1.  (a) CVD experimental equipment for MoS2 synthesis; (b) enlarged view of the chemical reaction zone; (c) temperature curve of CVD growth process.

    图 2  (a)—(d)不同MoO3前驱体量下制备的MoS2的SEM形貌; (e) MoS2覆盖率随前驱体量的变化曲线; (f) MoS2的AFM照片(插图)和图中黑线高度随位置的变化曲线

    Figure 2.  (a)–(d) SEM morphologies of MoS2 prepared under different volumes of MoO3 precursor; (e) curve of MoS2 coverage with precursor volume; (f) the height of MoS2 as a function of position marked as black line in the inset, inset is AFM photograph of MoS2.

    图 3  (a) MoS2单晶光学显微镜图像; (b)单晶MoS2的拉曼成像; (c) Si/SiO2基底拉曼成像; (d)对应图(a)中各点的拉曼光谱; (e) MoS2薄膜的光学显微镜图像; (f) MoS2薄膜的拉曼成像; (g) Si/SiO2基底拉曼成像; (h)图(e)各点对应的拉曼光谱

    Figure 3.  (a) Optical microscope image of single crystal MoS2; (b) Raman mapping of single crystal MoS2; (c) Raman mapping of Si/SiO2 substrate; (d) Raman spectra of each point in Fig. (a); (e) optical microscope image of thin film MoS2; (f) Raman mapping of thin film MoS2; (g) Raman mapping of Si/SiO2 substrate; (h) Raman spectra of each point in Fig. (e).

    图 4  (a)叉指电极装置示意图; (b) Au和Ti/Au电极上的电流和电压曲线, 插图是MoS2叉指器件实物图

    Figure 4.  (a) Schematic diagram of interdigital device; (b) the current and voltage curve with Au and Ti/Au electrodes, the inset shows the image of the MoS2 interdigital device.

    图 5  不同电压(a)和光功率(b)条件的电流随时间变化关系; 光电探测器件的响应度和探测率随波长(c)和光功率(d)的变化关系; 器件的响应上升时间(e)和下降恢复时间(f)

    Figure 5.  The relation of current with time under different voltage conditions (a) and different optical power conditions (b); the relationship between the responsivity and the detection rate of the photodetector with wavelength (c) and with optical power (d); the rise time (e) and the recovery time (f) of the photodetector.

  • [1]

    Gao G Y, Yu J, Yang X X, Pang Y K, Zhao J, Pan C F, Sun Q J, Wang Z L 2018 Adv. Mater. 31 1806905

    [2]

    Li X F, Yang L M, Si M W, Li S C, Huang M Q, Ye P D, Wu Y Q 2015 Adv. Mater. 27 1547Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Kaushik V, Ahmad M, Agarwal K, Varandani D, Belle B D, Das P, Mehta B R 2020 J. Phys. Chem. C 124 23368Google Scholar

    [5]

    Bagot P A J, Silk O B W, Douglas J O, Pedrazzini S, Crudden D J, Martin T L, Hardy M C, Moody M P, Reed R C 2017 Acta Mater. 125 156Google Scholar

    [6]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar

    [7]

    Huang Z Z, Zhang T F, Liu J K, Zhang L H, Jin Y H, Wang J P, Jiang K, Fan S, Li Q Q 2019 ACS Appl. Electron. Mater. 1 1314Google Scholar

    [8]

    Furchi M M, Polyushkin D K, Pospischil A, Mueller T 2014 Nano Lett. 14 6165Google Scholar

    [9]

    Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S, Kim J M 2017 Nat. Commun. 8 14734Google Scholar

    [10]

    Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S, Cho J H 2016 Adv. Mater. 28 9196Google Scholar

    [11]

    Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J, Yoo W J 2013 Nat. Commun. 4 1624Google Scholar

    [12]

    Chen Y F, Wang Y, Wang Z, Gu Y, Ye Y, Chai X L, Ye J F, Chen Y, Xie R Z, Zhou Y, Hu Z G, Li Q, Zhang L L, Wang F, Wang P, Miao J S, Wang J L, Chen X S, Lu W, Zhou P, Hu W D 2021 Nat. Electron. 4 357Google Scholar

    [13]

    Wu P S, Ye L, Tong L, Wang P, Wang Y, Wang H L, Ge H N, Wang Z, Gu Y, Zhang K, Yu Y Y, Peng M, Wang F, Huang M, Zhou P, Hu W D 2022 Light Sci. Appl. 11 6Google Scholar

    [14]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [15]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [17]

    Li H, Wu J B, Ran F R, Lin M L, Liu X L, Zhao Y Y, Lu X, Xiong Q H, Zhang J, Huang W, Zhang H, Tan P H 2017 ACS Nano 11 11714Google Scholar

    [18]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [19]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [20]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [21]

    Ren S, Rong P, Yu Q 2018 Ceramics Int. 44 11940Google Scholar

    [22]

    Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Romaguera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C 2014 Nano Lett. 14 3987Google Scholar

    [23]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [24]

    Sharma M, Singh A, Aggarwal P, Singh R 2022 ACS Omega 7 11731Google Scholar

    [25]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [26]

    Lee C H, Zhang Y, Johnson J M, Koltun R, Gambin V, Jamison J S, Myers R C, Hwang J, Rajan S 2020 Appl. Phys. Lett. 117 123102Google Scholar

    [27]

    Jie W J, Yang Z B, Zhang F, Bai G X, Leung C W, Hao J H 2017 ACS Nano 11 6950Google Scholar

    [28]

    Kodu M, Avarmaa T, Jaaniso R, Leemets K, Mändar H, Nagirnyi V 2016 Superlattices Microstruct. 98 18Google Scholar

    [29]

    Wang J, Fan L, Wang X M, Xiao T T, Peng L P, Wang X M, Yu J, Cao L H, Xiong Z W, Fu Y J, Wang C B, Shen Q, Wu W D 2019 Appl. Surf. Sci. 494 651Google Scholar

    [30]

    Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135Google Scholar

    [31]

    Hu S, Wang X F, Meng L, Yan X 2017 J. Mater. Sci. 52 7215Google Scholar

    [32]

    Liu P Y, Luo T, Xing J, Xu H, Hao H Y, Liu H, Dong J J 2017 Nanoscale Res. Lett. 12 558Google Scholar

    [33]

    Li M G, Yao J D, Wu X X, Zhang S C, Xing B R, Niu X Y, Yan X Y, Yu Y, Liu Y L, Wang Y W 2020 ACS Appl. Mater. Interfaces 12 6276Google Scholar

    [34]

    Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368Google Scholar

    [35]

    Zhang Z W, Huang Z W, Li J, Wang D, Lin Y, Yang X D, Liu H, Liu S, Wang Y L, Li B, Duan X F, Duan X D 2022 Nat. Nanotechnol. 17 493Google Scholar

    [36]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [37]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [38]

    Di Bartolomeo A, Genovese L, Foller T, Giubileo F, Luongo G, Croin L, Liang S J, Ang L K, Schleberger M 2017 Nanotechnology 28 214002Google Scholar

    [39]

    Nie C B, Yu L Y, Wei X Z, Shen J, Lu W Q, Chen W M, Feng S L, Shi H F 2017 Nanotechnology 28 275203Google Scholar

    [40]

    Han P, St Marie L, Wang Q X, Quirk N, El Fatimy A, Ishigami M, Barbara P 2018 Nanotechnology 29 20LT01Google Scholar

    [41]

    Pak Y, Park W, Mitra S, Sasikala Devi A A, Loganathan K, Kumaresan Y, Kim Y, Cho B, Jung G Y, Hussain M M, Roqan I S 2018 Small 14 201703176

    [42]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [43]

    Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302Google Scholar

    [44]

    Li Y N, Li L N, Li S S, Sun J Y, Fang Y, Deng T 2022 ACS Omega 7 13615Google Scholar

    [45]

    Zhao T G, Guo J X, Li T T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y Y, Xu T F, Xie R Z, Gao P Q, Wang X R, Hu W D 2023 Chem. Soc. Rev. 52 1650Google Scholar

    [46]

    Suleman M, Lee S, Kim M, Nguyen V H, Riaz M, Nasir N, Kumar S, Park H M, Jung J, Seo Y 2022 ACS Omega 7 30074Google Scholar

    [47]

    Sun P, Liu Y W, Ma J, Li W, Zhang K L, Yuan Y J 2019 CrystEngComm 21 6969Google Scholar

    [48]

    Zhao T G, Zhong F, Wang S C, Wang Y K, Xu T F, Chen Y, Yu Y Y, Guo J X, Wang Z, Yu J C, Gao P Q 2022 Adv. Opt. Mater. 11 2202208

    [49]

    Sinha S, Kumar S, Arora SK, Sharma A, Tomar M, Wu H C, Gupta V 2021 J. Appl. Phys. 129 155304Google Scholar

  • [1] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [2] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [3] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. Self-powered solar-blind ultraviolet photoelectric detector based on GaSe/β-Ga2O3 heterojunction. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240267
    [4] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [5] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [6] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [7] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [8] Song Yu-Xin, Li Yu-Qi, Wang Ling-Han, Zhang Xiao-Lan, Wang Chong, Wang Qin-Sheng. Li intercalation modulated photocurrent response in WS2 optoelectronic devices. Acta Physica Sinica, 2023, 72(22): 226801. doi: 10.7498/aps.72.20231000
    [9] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [10] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [11] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [12] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [13] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [14] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [15] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [16] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [17] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [18] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [19] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [20] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
Metrics
  • Abstract views:  2243
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2023
  • Accepted Date:  04 April 2023
  • Available Online:  11 April 2023
  • Published Online:  05 June 2023

/

返回文章
返回