Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on gas flow in curved capillary used in laser wakefield acceleration

Zhao Yue-Qi Cui Pei-Lin Li Jian-Long Li Bo-Yuan Zhu Xin-Zhe Chen Min Liu Zhen-Yu

Citation:

Simulation study on gas flow in curved capillary used in laser wakefield acceleration

Zhao Yue-Qi, Cui Pei-Lin, Li Jian-Long, Li Bo-Yuan, Zhu Xin-Zhe, Chen Min, Liu Zhen-Yu
PDF
HTML
Get Citation
  • Based on the standard k-ε model, a gas flow calculation model in a curved capillary is established, and the flow process of helium working medium in a curved capillary with gradually changing curvature is numerically simulated. Compared with other methods of studying micro-scale gas flow, this simulation obtains the gas density distribution in the curved capillary more conveniently, and has the same variation trend as the experimental measurement of the plasma electron density distribution, and can predict the gas flow distribution in the tube more accurately. The situation provides a theoretical basis for designing the discharge capillary experiment. Based on this model, the gas flow process in the capillary of the one-sided direct flushing, double-sided hedging and “straight + curved” cascade acceleration structures are numerically simulated. The results and conclusions are summarized as follows.1) Comparing with the single-sided straight-bent capillary structure, the gas density fluctuation between the left gas inlet and the right gas inlet of the double-sided hedging-bend capillary is smaller, the gas flow is more stable, and a relatively stable plasma density channel can be generated.2) In the double-sided hedged curved capillary, a relatively uniform gas density distribution is formed between the two inlets of the capillary under the same inflation back pressure; further research results show that a more uniform plasma density distribution with different lengths can be obtained by controlling the position of the gas inlet.3) In the “traight + curved” cascaded accelerating capillary structure, the diameter of the electron injection channel will affect the gas density distribution in the bend. When the diameter of the electron injection channel is small, the absolute pressure in the capillary is low. The larger pressure difference between them will lead to a higher gas flow rate in the elbow, which will increase the fluctuation of the gas density in the elbow; the final research shows that the diameters of the electron injection channel, 100 μm and 150 μm are more suitable for the application in the “direct + bend” cascade acceleration capillary structure design.In summary, the calculation model of gas flow in the curved capillary constructed in this paper can accurately predict the gas flow distribution in the tube. The double-sided hedged curved capillary can generate a relatively stable plasma density channel, and the electron injection channel diameters, 100 μm and 150 μm, are more suitable for application in the “straight + curved” cascade accelerating capillary structure design. The research results obtained are expected to provide theoretical guidance and technical support for the laser wake cascade acceleration experiment based on the curved capillary with gradually changing curvature.
      Corresponding author: Liu Zhen-Yu, zhenyu.liu@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11991074) and the 2022 Open Project of Key Laboratory for Laser Plasma (Ministry of Education), Shanghai Jiao Tong University, China.
    [1]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 7Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Particle Beams 32 7Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [4]

    Leemans W, Esarey E 2009 Phys. Today 62 44Google Scholar

    [5]

    Gonsalves A J, Rowlands-Rees T P, Broks B H, van der Mullen J J, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [6]

    Zigler A, Botton M, Ferber Y, Johansson G, Pollak O, Dekel E, Filippi F, Anania M P, Bisesto F, Pompili R, Ferrario M 2018 Appl. Phys. Lett. 113 183505Google Scholar

    [7]

    祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰 2022 物理学报71 095202Google Scholar

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Lu L, Yuan X H, Yan W C, Chen M, Chen L M, Sheng Z M, Zhang J 2022 Acta Phys. Sin. 71 095202Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [10]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [11]

    Biagioni A, Anania M P, Arjmand S, Behar E, Costa G, Del Dotto A, Ferrario M, Galletti M, Lollo V, Pellegrini D, Di Pirro G, Pompili R, Raz Y, Russo G, Zigler A 2021 Plasma Phys. Control. Fusion 63 115013Google Scholar

    [12]

    Yang Y, Wen C 2017 Sep. Purif. Technol. 174 22Google Scholar

    [13]

    Peng M, Chen L, Ji W T, Tao W Q 2020 Int. J. Heat Mass Transf. 157 119982Google Scholar

    [14]

    Qin M, Liao K, Chen S, He G, Zhang S 2023 Chem. Eng. Res. Des. 190 605Google Scholar

    [15]

    闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 物理学报 62 174701Google Scholar

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701Google Scholar

    [16]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [17]

    顾娟, 黄荣宗, 刘振宇, 吴慧英 2017 物理学报 66 114701Google Scholar

    Gu J, Huang R Z, Liu Z Y, Wu H Y 2017 Acta Phys. Sin. 66 114701Google Scholar

    [18]

    Dai W, Wu H, Liu Z Y, Zhang S 2022 Phys. Rev. E 105 025310Google Scholar

    [19]

    Jeong N, Lin C L, Choi D H 2006 J. Micromech. Microeng. 16 1741Google Scholar

    [20]

    王佐, 刘雁, 张家忠 2016 物理学报 65 014703Google Scholar

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703Google Scholar

    [21]

    Xue H, Fan Q, Shu C 2000 Probab. Eng. Eng. Mech. 15 213Google Scholar

    [22]

    Wang M, Li Z 2004 Int. J. Heat Fluid Flow 25 975Google Scholar

    [23]

    Shariati V, Ahmadian M H, Roohi E 2019 Sci. Rep. 9 17183Google Scholar

    [24]

    Li J L, Li B Y, Zhu X Z, Bi Z W, Wen X H, Lu L, Yuan X H, Liu F, Chen M 2023 High Power Laser Sci. Eng. 11 E58Google Scholar

    [25]

    Deng H, Zhang Z, Chen M, Li J, Cao Q, Hu X 2023 Materials 16 3278Google Scholar

    [26]

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Phys. Rev. Lett. 130 215001Google Scholar

  • 图 1  放电毛细管结构示意图

    Figure 1.  Schematic diagram of discharge capillary structure.

    图 2  弯曲毛细管结构网格划分及边界设置

    Figure 2.  Mesh division and boundary setting of curved capillary structure.

    图 3  实验等离子体密度与模拟气体密度对比图 (a)实验等离子体密度; (b)模拟毛细管中心轴线上气体密度

    Figure 3.  Comparison of experimental plasma density and simulated gas density: (a) Experimental plasma density; (b) simulated gas density on the central axis of the capillary.

    图 4  模拟计算域气体流速分布

    Figure 4.  Gas flow velocity distribution in the simulated computational domain.

    图 5  不同充气方式和充气压力下模拟管内气体密度 (a)单侧直冲; (b)双侧对冲

    Figure 5.  Gas density in the simulated tube under different inflation methods and inflation pressures: (a) One-side inflation; (b) double-side inflation

    图 6  不同充气压力下, 不同充气方式管内气体流线图 (a) 68950 Pa单侧直冲; (b) 68950 Pa双侧对冲; (c) 137900 Pa单侧直冲; (d) 137900 Pa双侧对冲

    Figure 6.  Gas streamlines in the simulated pipe with different inflation methods: (a) One-side inflation under 68950 Pa; (b) double-side inflation under 68950 Pa; (c) one-side inflation under 137900 Pa; (d) double-side inflation under 137900 Pa.

    图 7  不同充气口位置毛细管中心轴线上气体密度

    Figure 7.  Gas density on the central axis of the capillary at different gas filling positions.

    图 8  充气位置距毛细管两端12 mm时, 充气口之间流线图

    Figure 8.  Streamline diagram between the left and right inflation port at 12 mm from both ends of the capillary.

    图 9  充气位置距毛细管两端12 mm时, 充气口之间压力云图

    Figure 9.  Pressure cloud diagram between the left and right inflation port at 12 mm from both ends of the capillary.

    图 10  “直+弯”放电毛细管结构示意图

    Figure 10.  Schematic diagram of the “straight + curved” discharge capillary.

    图 11  不同电子注入通道口径下弯曲毛细管内的气体密度分布 (a)直管径50 μm; (b)直管径100 μm; (c)直管径150 μm; (d)直管径200 μm; (e)直管径300 μm

    Figure 11.  Gas density distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 μm diameter; (b) 100 μm diameter; (c) 150 μm diameter; (d) 200 μm diameter; (e) 300 μm diameter.

    图 12  不同电子注入通道口径下弯曲毛细管内的气体流速分布图 (a)直管径50 μm; (b)直管径100 μm; (c)直管径150 μm; (d)直管径200 μm; (e)直管径300 μm

    Figure 12.  Gas velocity distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 μm diameter; (b) 100 μm diameter; (c) 150 μm diameter; (d) 200 μm diameter; (e) 300 μm diameter.

    表 1  网格无关性验证

    Table 1.  Grid independence verification.

    网格数 管内气体
    流速/(m·s–1)
    与前计算值的相对
    误差绝对值/%
    6581 586 59.23
    11524 368 29.50
    26044 533 15.48
    39977 452 4.63
    70628 432 3.57
    160003 448
    DownLoad: CSV

    表 2  物性参数表

    Table 2.  Physical parameters.

    比热容/
    (J·kg–1)
    导热系数/
    (W·m–1·K–1)
    黏度/
    (Pa·s)
    分子质量/
    (kg·kmol–1)
    氦气 5193 0.152 1.99 × 10–5 4.0026
    DownLoad: CSV
  • [1]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 7Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Particle Beams 32 7Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [4]

    Leemans W, Esarey E 2009 Phys. Today 62 44Google Scholar

    [5]

    Gonsalves A J, Rowlands-Rees T P, Broks B H, van der Mullen J J, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [6]

    Zigler A, Botton M, Ferber Y, Johansson G, Pollak O, Dekel E, Filippi F, Anania M P, Bisesto F, Pompili R, Ferrario M 2018 Appl. Phys. Lett. 113 183505Google Scholar

    [7]

    祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰 2022 物理学报71 095202Google Scholar

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Lu L, Yuan X H, Yan W C, Chen M, Chen L M, Sheng Z M, Zhang J 2022 Acta Phys. Sin. 71 095202Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [10]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [11]

    Biagioni A, Anania M P, Arjmand S, Behar E, Costa G, Del Dotto A, Ferrario M, Galletti M, Lollo V, Pellegrini D, Di Pirro G, Pompili R, Raz Y, Russo G, Zigler A 2021 Plasma Phys. Control. Fusion 63 115013Google Scholar

    [12]

    Yang Y, Wen C 2017 Sep. Purif. Technol. 174 22Google Scholar

    [13]

    Peng M, Chen L, Ji W T, Tao W Q 2020 Int. J. Heat Mass Transf. 157 119982Google Scholar

    [14]

    Qin M, Liao K, Chen S, He G, Zhang S 2023 Chem. Eng. Res. Des. 190 605Google Scholar

    [15]

    闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 物理学报 62 174701Google Scholar

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701Google Scholar

    [16]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [17]

    顾娟, 黄荣宗, 刘振宇, 吴慧英 2017 物理学报 66 114701Google Scholar

    Gu J, Huang R Z, Liu Z Y, Wu H Y 2017 Acta Phys. Sin. 66 114701Google Scholar

    [18]

    Dai W, Wu H, Liu Z Y, Zhang S 2022 Phys. Rev. E 105 025310Google Scholar

    [19]

    Jeong N, Lin C L, Choi D H 2006 J. Micromech. Microeng. 16 1741Google Scholar

    [20]

    王佐, 刘雁, 张家忠 2016 物理学报 65 014703Google Scholar

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703Google Scholar

    [21]

    Xue H, Fan Q, Shu C 2000 Probab. Eng. Eng. Mech. 15 213Google Scholar

    [22]

    Wang M, Li Z 2004 Int. J. Heat Fluid Flow 25 975Google Scholar

    [23]

    Shariati V, Ahmadian M H, Roohi E 2019 Sci. Rep. 9 17183Google Scholar

    [24]

    Li J L, Li B Y, Zhu X Z, Bi Z W, Wen X H, Lu L, Yuan X H, Liu F, Chen M 2023 High Power Laser Sci. Eng. 11 E58Google Scholar

    [25]

    Deng H, Zhang Z, Chen M, Li J, Cao Q, Hu X 2023 Materials 16 3278Google Scholar

    [26]

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Phys. Rev. Lett. 130 215001Google Scholar

  • [1] Wan Cheng-Liang, Pan Yu-Zhou, Zhu Li-Ping, Zhang Hao-Wen, Zhao Zhuo-Yan, Yuan Hua, Li Peng-Fei, Fan Xu-Hong, Sun Wen-Sheng, Du Zhan-Hui, Chen Qian, Cui Ying, Liao Tian-Fa, Wei Xiao-Hui, Wang Tian-Qi, Chen Xi-Men, Li Gong-Ping, Reinhold Schuch, Zhang Hong-Qiang. Production and Measurement of MeV Proton Microbeams in Atmospheric Environment Based on Glass Capillary. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240301
    [2] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification. Acta Physica Sinica, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [5] Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo. Laser emission characteristics of the capillary of dye-doped liquid crystal. Acta Physica Sinica, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [6] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [7] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [8] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [10] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [11] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Capillary drawing for fabrication of photonic crystal fibers: theoretical calculation and experiments. Acta Physica Sinica, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [12] Wang Jian, Gu Yu-Qiu, Cai Da-Feng, Jiao Chun-Ye, Wu Yu-Chi, He Ying-Ling, Teng Jian, Yang Xiang-Dong, Wang Lei, Zhao Zong-Qing. Photon acceleration in the laser wakefield. Acta Physica Sinica, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [13] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [14] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [15] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Dependence of spectrum broadening on inner diameter of capillary restricting the filamentation in high pressure gas. Acta Physica Sinica, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [16] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] Chen Bao-Zhen, Huang Zu-Qia. Theoretical description of four-wave mixing of femtosecond pulses in gas-filled capillary*. Acta Physica Sinica, 2004, 53(12): 4218-4223. doi: 10.7498/aps.53.4218
Metrics
  • Abstract views:  2565
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2023
  • Accepted Date:  01 July 2023
  • Available Online:  22 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回