Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Depth distribution law of polarization characteristics of vector acoustic field in shallow sea

Wei Yi-Zheng Sun Chao Zhu Qi-Xuan

Citation:

Depth distribution law of polarization characteristics of vector acoustic field in shallow sea

Wei Yi-Zheng, Sun Chao, Zhu Qi-Xuan
PDF
HTML
Get Citation
  • The polarization of the acoustic field in the ocean waveguide environment is a unique property that can be measured by using a particle velocity sensor in the water column. It can provide new ideas for locating and detecting the underwater target , so it is interesting to study the polarization. The polarization of a monochromatic signal has been described by the Stokes parameters, a set of four real-valued quantities in previous work. In this work, the Stokes parameters are extended to the broadband form, and the expression is simplified by using the nonstationary phase approximation, which reduces the complexity of the theoretical derivation and reveals the physical mechanism behind the significant variations in polarization with source depth and symmetrical depth. Theoretical analysis shows that the polarization characteristics in the ideal waveguide vary significantly in the sea surface, the sea bottom, the depth of the sound source and symmetrical depth. In this work the numerical simulation is used to verify the theoretical analysis and study the relationship between range and integral bandwidth when nonstationary phase approximation method is effective. The numerical results demonstrate that the simplified expression using the nonstationary phase approximation is effective and can better characterize the depth distribution characteristics of the polarization. Additionally, by normalizing the broadband Stokes parameters, the effect of range on the depth distribution characteristics of polarization can be removed. It means that the normalized broadband Stokes parameters are in theory free of the range and depend on the environment, the receiver depth and the source depth, which have the potential to be used for source depth estimation. Subsequently, focusing on normalized broadband Stokes parameters, we analyzes the effects of parameters such as source frequency, source depth, sound speed profile and water depth on the depth distribution characteristics of polarization. The analysis results show that environmental factors have great influence on the depth distribution characteristics of polarization. In the end, the validity of the nonstationary phase approximation and the range-independent property of the normalized broadband Stokes parameters are verified by the results of the RHUM-RUM experimental data processing. The findings provide a theoretical basis for passive target depth estimation based on polarization.
  • 图 1  横波的极化现象 (a) 线极化; (b) 圆极化; (c) 椭圆极化

    Figure 1.  Polarization of transverse wave: (a) Linear polarization; (b) circular polarization; (c) elliptical polarization.

    图 2  质点椭圆运动轨迹

    Figure 2.  Elliptical path of acoustic particle motion.

    图 3  归一化Stokes参数与极化状态的关系

    Figure 3.  Relation between normalized Stokes parameters and polarization states.

    图 4  ${D_n}(z)$随$z$变化曲线

    Figure 4.  Curve of ${D_n}(z)$ with $z$.

    图 5  ${E_n}(z)$随$z$变化曲线

    Figure 5.  Curve of ${E_n}(z)$ with z.

    图 6  理想固体海底等声速波导环境下宽带Stokes参数深度分布曲线 (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 6.  Broadband Stokes parameters depth distribution curves for an ideal solid seabed isovelocity environment: (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 7  不同积分带宽条件下$S_0^{\left[ {{f_1}, {f_2}} \right]}$的误差值随距离的变化

    Figure 7.  Error value with range for different integration bandwidth.

    图 8  非平稳相位近似成立距离${r_1}$与积分带宽的关系

    Figure 8.  Relationship between ${r_1}$ and integration bandwidth

    图 9  Pekeris波导环境下宽带Stokes参数深度分布曲线 (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 9.  Broadband Stokes parameters depth distribution curves for Pekeris waveguide: (a) $S_0^{\left[ {{f_1}, {f_2}} \right]}$; (b) $S_1^{\left[ {{f_1}, {f_2}} \right]}$; (c) $S_2^{\left[ {{f_1}, {f_2}} \right]}$; (d) $S_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 10  Pekeris波导环境下归一化宽带Stokes参数深度分布曲线 (a) 归一化宽带Stokes参数$s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) 归一化宽带Stokes参数$s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 10.  Normalized broadband Stokes parameters depth distribution curves for Pekeris waveguide: (a) Normalized broadband Stokes parameter $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) normalized broadband Stokes parameter $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 11  Pekeris波导环境下归一化宽带Stokes参数的深度-距离分布 (a) 归一化宽带Stokes参数$s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) 归一化宽带Stokes参数$s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 11.  Depth-range distribution of normalized broadband Stokes parameters for Pekeris waveguide: (a) Normalized broadband Stokes parameter $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) normalized broadband Stokes parameter $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 12  不同频率范围的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—125 Hz); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—250 Hz); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—500 Hz) ; (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—125 Hz) ; (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—250 Hz) ; (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(带宽$ {f_{{\text{c1}}}} $—500 Hz)

    Figure 12.  Normalized broadband Stokes parameters depth distribution curves for different frequency ranges: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—125 Hz); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—250 Hz) ; (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—500 Hz) ; (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—125 Hz) ; (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—250 Hz) ; (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$($ {f_{{\text{c1}}}} $—500 Hz)

    图 13  不同声源深度的归一化宽带Stokes参数深度分布 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 13.  Normalized broadband Stokes parameters depth distributions for different sound source depths: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

    图 14  声速剖面示意图

    Figure 14.  Sound speed profile.

    图 15  不同声速剖面的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(正梯度); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(负梯度); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(负跃层); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(正梯度); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(负梯度); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(负跃层)

    Figure 15.  Normalized broadband Stokes parameters depth distribution curves for different sound speed profiles: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(positive gradient); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(negative gradient); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(negative thermocline); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(positive gradient); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(negative gradient); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(negative thermocline).

    图 16  不同海深环境的归一化宽带Stokes参数深度分布曲线 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深50 m); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深100 m); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(海深200 m); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深50 m); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深100 m); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(海深200 m)

    Figure 16.  Normalized broadband Stokes parameters depth distribution curves for different depths of water column: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 50 m); (b) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 100 m); (c) $s_1^{\left[ {{f_1}, {f_2}} \right]}$(depth 200 m); (d) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 50 m); (e) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 100 m); (f) $s_3^{\left[ {{f_1}, {f_2}} \right]}$(depth 200 m).

    图 17  声压通道倒谱图

    Figure 17.  Cepstrogram of pressure channel.

    图 18  目标方位估计结果

    Figure 18.  Results of ship azimuth estimation.

    图 19  质点振速信号的时频图 (a) 水平质点振速${v_r}$; (b) 垂直质点振速${v_z}$

    Figure 19.  Spectrogram of the particle velocity: (a) horizontal particle velocity ${v_r}$; (b) vertical particle velocity ${v_z}$.

    图 20  归一化宽带Stokes参数随时间的变化 (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_2^{\left[ {{f_1}, {f_2}} \right]}$; (c) $s_3^{\left[ {{f_1}, {f_2}} \right]}$

    Figure 20.  Time-varying curves of the normalized broadband Stokes parameters: (a) $s_1^{\left[ {{f_1}, {f_2}} \right]}$; (b) $s_2^{\left[ {{f_1}, {f_2}} \right]}$; (c) $s_3^{\left[ {{f_1}, {f_2}} \right]}$.

  • [1]

    休罗夫V著 (贾志富译) 2011 海洋矢量声学(北京: 国防工业出版社)第2—5页

    Shchurov V(translated by Jia Z F)2011 Vector Acoustics of the Ocean (Beijing: National Defense Industry Press) pp2–5

    [2]

    姜哲, 郭骅 1991 声学学报 16 330

    Jiang Z, Guo H 1991 Acta Acust. 16 330

    [3]

    Li J F, Pascal J C, Carles C 1998 J. Acoust. Soc. Am. 103 962Google Scholar

    [4]

    Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019 Natl. Sci. Rev. 6 707Google Scholar

    [5]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 020301

    [6]

    Long Y, Ge H, Zhang D, Xu X, Ren J, Lu M-H, Bao M, Chen H, Chen Y-F 2020 Natl. Sci. Rev. 7 1024Google Scholar

    [7]

    Long Y, Zhang D, Yang C, Ge J, Chen H, Ren J 2020 Nat. Commun. 11 4716Google Scholar

    [8]

    Shchurov V A, Kuleshov V P, Cherkasov A V 2011 Acoust. Phys. 57 851Google Scholar

    [9]

    D’Spain G L, Hodgkiss W S 1991 J. Acoust. Soc. Am. 90 2300

    [10]

    Dall'Osto D R, Dahl P H 2013 J. Acoust. Soc. Am. 134 109Google Scholar

    [11]

    Dahl P H, Dall'Osto D R 2020 IEEE J. Oceanic Eng. 45 131Google Scholar

    [12]

    Dahl P H, Dall'Osto D R 2021 IEEE J. Oceanic Eng. 47 680

    [13]

    刘伟 2014 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Liu W 2014 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [14]

    Du B, Zhang W, Shi X 2016 IEEE/OES China Ocean Acoustics (COA) Harbin, China, August 8, 2016 pp1-3

    [15]

    韩雪 2020 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Han X 2020 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [16]

    Bonnel J, Flamant J, Dall'Osto D R, Le Bihan N, Dahl P H 2021 J. Acoust. Soc. Am. 150 1897Google Scholar

    [17]

    玻恩M, 沃尔夫 E著 (杨葭荪译) 2016 光学原理: 光的传播、干涉和衍射的电磁理论(北京: 电子工业出版社)第20—27页

    Born M, Wolf E (translated by Yang J S) 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Beijing: Publishing House of Electronics Industry) pp20–27

    [18]

    Dahl P H, Bonnel J 2022 J. Acoust. Soc. Am. 151 3818Google Scholar

    [19]

    Dahl P H, Dall'Osto D R, Hodgkiss W S 2023 J. Acoust. Soc. Am. 154 1482Google Scholar

    [20]

    Flamant J, Bonnel J 2023 J. Acoust. Soc. Am. 153 3012Google Scholar

    [21]

    延森 F B, 库珀曼 W A, 波特 M B, 施米特 H 著 (周利生, 王鲁军, 杜栓平 译) 2017 计算海洋声学 (第2版)(北京: 国防工业出版社)第272—275页

    Jensen F B, Kuperman W A, Porter M B, Schmidt H (translated by Zhou L S, Wang L J, Du S P) 2017 Computational Ocean Acoustics (2nd Ed. ) (Beijing: National Defense Industry Press) pp272–275

    [22]

    Tsekhmistrenko M, Sigloch K, Hosseini K, Barruol G 2021 Nat. Geosci. 14 612Google Scholar

    [23]

    Trabattoni A, Barruol G, Dréo R, Boudraa A 2023 J. Acoust. Soc. Am. 153 260Google Scholar

  • [1] Chen Hao-Peng, Nie Yong-Jie, Li Guo-Chang, Wei Yan-Hui, Hu Hao, Lu Guang-Hao, Li Sheng-Tao, Zhu Yuan-Wei. Polarization characteristics of polymer dispersed liquid crystal films and their effects on electro-optical properties. Acta Physica Sinica, doi: 10.7498/aps.72.20230664
    [2] Wang Dong, Guo Liang-Hao, Liu Jian-Jun, Qi Yu-Bo. Passive impulsive source range estimation based on warping operator in shallow water. Acta Physica Sinica, doi: 10.7498/aps.65.104302
    [3] Qu Shao-Hua, Cao Wan-Qiang. Research on polarization effect for relaxor ferroelectrics by spherical random bond-random field model. Acta Physica Sinica, doi: 10.7498/aps.63.047701
    [4] Qu Ke, Hu Chang-Qing, Zhao Mei. A rapid inversion scheme for seabed single parameter using time-domain impulse response. Acta Physica Sinica, doi: 10.7498/aps.62.224303
    [5] Lin Wang-Sheng, Liang Guo-Long, Fu Jin, Zhang Guang-Pu. The mechanism of the interference structure in shallow water vector acoustic field and experimental investigation. Acta Physica Sinica, doi: 10.7498/aps.62.144301
    [6] Huang Xu-Dong, Feng Yu-Jun, Tang Shuai. The influence of variable quantity of polarization on the current intensity of the electron emission from La-doped Pb(Zr, Sn, Ti)O3 ferroelectric cathode. Acta Physica Sinica, doi: 10.7498/aps.61.087702
    [7] Chen Long-Tian, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials. Acta Physica Sinica, doi: 10.7498/aps.61.094203
    [8] Liu Li-Juan, Xie Lu-You, Chen Zhan-Bin, Jiang Jun, Dong Chen-Zhong. A theoretical study on electron impact excitation differential cross sections and Stokes parameters of Mg atom. Acta Physica Sinica, doi: 10.7498/aps.61.103102
    [9] Lu Wen, Yan Wei, Wang Rui, Wang Ying-Qiang. Eliminating the influence of attitude on brightness temperatures measurement for polarimetric microwave radiometer. Acta Physica Sinica, doi: 10.7498/aps.61.018401
    [10] Zhao Jing-Bo, Du Hong-Liang, Qu Shao-Bo, Zhang Hong-Mei, Xu Zhuo. Effects of A-site equivalence and non-equivalence substitution on polarization properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Acta Physica Sinica, doi: 10.7498/aps.60.107701
    [11] Sun Xian-Ming, Ha Heng-Xu. Retrieval of the optical thickness and effective radius of aerosols from reflected solar radiation measurements. Acta Physica Sinica, doi: 10.7498/aps.57.5565
    [12] Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Jiang Sheng-Lin, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, doi: 10.7498/aps.57.3840
    [13] Gu Xiao-Ling, Guo Xia, Wu Di, Xu Li-Hua, Liang Ting, Guo Jing, Shen Guang-Di. The effect of polarization and non-uniform carrier distribution in the GaN-based light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.56.4977
    [14] Zhu Zhen-Ye, Wang Biao, Zheng Yue, Wang Hai, Li Qing-Kun, Li Chen-Liang. First-principles study of structural instability and polarization in BaTiO3/SrTiO3 superlattice. Acta Physica Sinica, doi: 10.7498/aps.56.5986
    [15] Liu Hong, Pu Zhao-Hui, Gong Xiao-Gang, Wang Zhi-Hong, Huang Hui-Dong, Li Yan-Rong, Xiao Ding-Quan, Zhu Jian-Guo. Study of nanoscale banded 90° domain patterns and pyroelectric properties in (111) oriented (Pb,La)TiO3 thin films. Acta Physica Sinica, doi: 10.7498/aps.55.6123
    [16] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, doi: 10.7498/aps.55.4292
    [17] Zhang Chun-Fu, Hao Yue, You Hai-Long, Zhang Jin-Feng, Zhou Xiao-Wei. Influence of interface dipoles on the UV/solar rejection ratios of GaN/AlGaN/GaN photodetectors. Acta Physica Sinica, doi: 10.7498/aps.54.3810
    [18] Liu Yi-Bao, Pang Wen-Ning, Ding Hai-Bing, Shang Ren-Cheng. Distribution of electron clouds in the excited atomic state in electron-photon coincidence scattering experiment. Acta Physica Sinica, doi: 10.7498/aps.54.3554
    [19] Guo Guan-Jun, Su Lin, Bi Si-Wen. Polarimetric microwave radiation of wind-roughened sea surfaces. Acta Physica Sinica, doi: 10.7498/aps.54.2448
    [20] Liu Yi-Bao, Pang Wen-Ning, Ding Hai-Bing, Shang Ren-Cheng. Study on the orientation parameter of excited sodium scattered by electrons. Acta Physica Sinica, doi: 10.7498/aps.54.5121
Metrics
  • Abstract views:  257
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2023
  • Accepted Date:  07 March 2024
  • Available Online:  12 March 2024

/

返回文章
返回