Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in application-oriented new generation diluted magnetic semiconductors

Peng Yi Zhao Guo-Qiang Deng Zheng Jin Chang-Qing

Citation:

Recent advances in application-oriented new generation diluted magnetic semiconductors

Peng Yi, Zhao Guo-Qiang, Deng Zheng, Jin Chang-Qing
PDF
HTML
Get Citation
  • Diluted ferromagnetic semiconductors (DMSs) have attracted widespread attention in last decades, owing to their potential applications in spintronic devices. But classical group-III-IV, and -V elements based DMS materials, such as (Ga,Mn)As which depend on heterovalent (Ga3+, Mn2+) doping, cannot separately control carrier and spin doping, and have seriously limited chemical solubilities, which are disadvantages for further improving the Curie temperatures. To overcome these difficulties, a new-generation DMS with independent spin and charge doping have been designed and synthesized. Their representatives are I-II-V based Li(Zn,Mn)As and II-II-V based (Ba,K)(Zn,Mn)2As2. In these new materials, doping isovalent Zn2+ and Mn2+ introduces only spins, while doping heterovalent non-magnetic elements introduces only charge. As a result, (Ba,K)(Zn,Mn)2As2 achieves Curie temperature of 230 K, a new record among DMS where ferromagnetic orderings are mediated by itinerate carriers. Herein, we summarize the recent advances in the new-generation DMS materials. The discovery and synthesis of several typical new-generation DMS materials are introduced. Physical properties are studied by using muon spin relaxation, angle-resolved photoemission spectroscopy and pair distribution function. The physical and chemical pressure effects on the title materials are demonstrated. The Andreev reflection junction based on single crystal and the measurement of spin polarization are exhibited. In the end, we demonstrate the potential multiple-parameter heterojunctions with DMSs superconductors and antiferromagnetic materials.
      Corresponding author: Deng Zheng, dengzheng@iphy.ac.cn ; Jin Chang-Qing, Jin@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403900), the National Natural Science Foundation of China (Grant No. 11974407), the Project for Young Scientists in Basic Research of Chinese Academy of Sciences, China (Grant No. YSBR-030), and the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2020007).
    [1]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [2]

    Furdyna J K 1991 Diluted Magnetic Semiconductors (Washington, D. C: National Academy Press

    [3]

    Zhao J H 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [4]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [5]

    Žutić I, Zhou T 2018 Sci. China Phys. Mech. 61 067031Google Scholar

    [6]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [7]

    Wei D 2023 J. Semicond. 44 040401Google Scholar

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [9]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [10]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [11]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [12]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [13]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [14]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(RGoogle Scholar

    [15]

    Mašek J, Kudrnovský J, Máca F, Gallagher B, Campion R, Gregory D, Jungwirth T 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [16]

    Liu X Y, Riney L, Guerra J, Powers W, Wang J S, Furdyna J K, Assaf B A 2022 J. Semicond. 43 112502Google Scholar

    [17]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A. A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [18]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [19]

    Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [20]

    Chen B J, Deng Z, Li W, Gao M, Li Z, Zhao G Q, Yu S, Wang X, Liu Q Q, Jin C Q 2016 J. Appl. Phys. 120 083902Google Scholar

    [21]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [22]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [23]

    Han W, Zhao K, Wang X, Liu Q Q, Ning F L, Deng Z, Liu Y, Zhu J, Ding C, Man H Y, Jin C Q 2013 Sci. China Phys. Mech. 56 2026Google Scholar

    [24]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(RGoogle Scholar

    [25]

    Ning F L, Man H Y, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B J 2014 Phys. Rev. B 90 085123Google Scholar

    [26]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Sci. Rep. 9 7490Google Scholar

    [27]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [28]

    Man H Y, Guo S L, Sui Y, Guo Y, Chen B J, Wang H D, Ding C, Ning F L 2015 Sci. Rep. 5 15507Google Scholar

    [29]

    Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H D, Deng Z, Jin C Q, Uemura Y J, Ning F L 2019 Phys. Rev. B 99 155201Google Scholar

    [30]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [31]

    Dong J O, Zhao X Q, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Ning F L 2022 J. Semicond. 43 072501Google Scholar

    [32]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(RGoogle Scholar

    [33]

    Yang X J, Li Y K, Shen C, Si B Q, Sun Y L, Tao Q, Cao G H, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [34]

    Chen B J, Deng Z, Li W M, Gao M R, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 AIP Adv. 6 115014Google Scholar

    [35]

    Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q, Jin C Q 2016 Chin. Phys. B 25 077503Google Scholar

    [36]

    Zhao X Q, Dong J O, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Tang Y S, Ning F L 2022 J. Semicond. 43 112501Google Scholar

    [37]

    Deng Z, Wang X, Wang M Q, Shen F, Zhang J N, Chen Y S, Feng H L, Xu J W, Peng Y, Li W M, Zhao J F, Wang X C, Valvidares M, Francoual S, Leupold O, Hu Z W, Tjeng L H, Li M R, Croft M, Zhang Y, Liu E K, He L H, Hu F X, Sun J R, Greenblatt M, Jin C Q 2023 Adv. Mater. 35 2370120Google Scholar

    [38]

    Dunsiger S R, Carlo J P, Goko T, Nieuwenhuys G, Prokscha T, Suter A, Morenzoni E, Chiba D, Nishitani Y, Tanikawa T, Matsukura F, Ohno H, Ohe J, Maekawa S, Uemura Y J 2010 Nat. Mater. 9 299Google Scholar

    [39]

    Kobayashi M, Muneta I, Takeda Y, Harada Y, Fujimori A, Krempaský J, Schmitt T, Ohya S, Tanaka M, Oshima M, Strocov V N 2014 Phys. Rev. B 89 205204Google Scholar

    [40]

    Edmonds K, van der Laan G, Panaccione G 2015 Semicond. Sci. Technol. 30 043001Google Scholar

    [41]

    Souma S, Chen L, Oszwaldowski R, Sato T, Matsukura F, Dietl T, Ohno H, Takahashi T 2016 Sci. Rep. 6 27266Google Scholar

    [42]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(RGoogle Scholar

    [43]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [44]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [45]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [46]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [47]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [48]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [49]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [50]

    Deng Z, Retuerto M, Liu S, Croft M, Stephens P W, Calder S, Li W M, Chen B J, Jin C Q, Hu Z, Li M R, Lin H J, Chan T S, Chen C T, Kim S W, Greenblatt M 2018 Chem. Mater. 30 7047Google Scholar

    [51]

    Deng Z, Kang C J, Croft M, Li W M, Shen X, Zhao J F, Yu R, Jin C Q, Kotliar G, Liu S, Tyson T A, Tappero R, Greenblatt M 2020 Angew. Chem. Int. Ed. 59 8240Google Scholar

    [52]

    Yu S, Zhao G Q, Peng Y, Zhu X H, Wang X C, Zhao J F, Cao L P, Li W M, Li Z M, Deng Z, Jin C Q 2019 APL Mater. 7 101119Google Scholar

    [53]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576Google Scholar

    [54]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

  • 图 1  (a) Li(Zn,Mn)As的晶体结构; (b) 不同Mn掺杂浓度的Li1.1(Zn1–xMnx)As磁矩-温度M(T)关系; (c) 不同Mn掺杂浓度的Li1.1(Zn1–xMnx)As的M(H)曲线[17]

    Figure 1.  (a) Crystal structure of Li(Zn,Mn)As; (b) temperature-dependent magnetization M(T) of Li1.1(Zn1–xMnx)As with different Mn doping concentrations; (c) field-dependent magnetization M(H) of Li1.1(Zn1–xMnx)As with different Mn doping concentrations[17]

    图 2  (a) LiZnAs及其在Li过掺杂(y > 0)和欠掺杂(y < 0)条件下的电阻率-温度关系ρ(T); (b) 不同外磁场下Li1.1(Zn0.9Mn0.1)As的ρ(T)曲线, 反映了样品低温下负磁阻的特点; (c) 不同温度下Li1.1(Zn0.95Mn0.05)As的霍尔电阻率, 2 K下的图像表现出了低场下的反常霍尔效应, 同时说明了样品属于p型半导体[17]

    Figure 2.  (a) Temperature-dependent resistivity of LiZnAs with overdoped and underdoped Li+; (b) temperature-dependent resistivity of Li1.1(Zn0.9Mn0.1)As under varying fields; (c) Hall resistivity of Li1.1(Zn0.95Mn0.05)As at different temperatures, manifesting the anomalous Hall effect at 2 K and p-type semiconductor[17].

    图 3  (a) (Ba,K)(Zn,Mn)2As2的晶体结构[18]; (b) 在FC和ZFC过程中不同K掺杂浓度下(Ba1–x, K)(Zn0.9Mn0.1)2As2M(T)曲线[18]; (c) (Ba0.7K0.3)(Zn0.85Mn0.15)2As2的磁化率-温度变化关系, 样品具有230 K的TC, 插图对应2 K下M(H)曲线[19]; (d) 2 K时不同K掺杂浓度下(Ba1–xKx)(Zn0.9Mn0.1)2As2M(H)曲线[18]

    Figure 3.  (a) Crystal structure of (Ba,K)(Zn,Mn)2As2[18]; (b) temperature-dependent magnetization of (Ba1–xK)(Zn0.9Mn0.1)2As2 for FC and ZFC process[18]; (c) temperature-dependent magnetization of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, the inset is field-dependent magnetization at 2 K[19]; (d) field-dependent magnetization of (Ba1–xKx)(Zn0.9Mn0.1)2As2 at 2 K with different K doping concentrations[18]

    图 4  (a) 单晶(Ba0.904K0.096)(Zn0.805Mn0.195)2As2的XRD图谱, 插图为晶体结构和单晶照片; (b) 外场垂直和平行于该单晶ab面的M(T)曲线, 这说明了晶体c方向为易磁化轴; (c) 不同温度下该单晶的霍尔电阻, 外场方向垂直于ab面外[21]

    Figure 4.  (a) XRD pattern of single crystal (Ba0.904K0.096)(Zn0.805Mn0.195)2As2, and the illustrations are crystal structure and single crystal photos; (b) temperature-dependent magnetization of this single crystal with field vertical and parallel to ab-plane, indicating the easy axis is along c axis; (c) Hall resistance of this single crystal under varying temperature with field vertical to ab-plane[21].

    图 5  (a) ZF模式下Li1.1(Zn0.95Mn0.05)As样品的μSR谱[17]; (b) ZF与WTF模式下拟合得到的Li1.1(Zn0.95Mn0.05)As样品中铁磁相体积分数[17]; (c) ZF模式下(Ba0.8K0.2)(Zn0.85Mn0.15)2As2样品的μSR谱[18]; (d) ZF与WTF模式下拟合得到的(Ba0.8K0.2)(Zn0.85Mn0.15)2As2样品中铁磁相体积分数, 插图为5 Oe外场下样品M/MS(T)图像[18]

    Figure 5.  (a) μSR spectra of Li1.1(Zn0.95Mn0.05)As in ZF process[17]; (b) the volume fraction of ferromagnetic region in Li1.1(Zn0.95Mn0.05)As derived from ZF and WTF process[17]; (c) μSR spectra of (Ba0.8K0.2)(Zn0.85Mn0.15)2As2 in ZF process[18]; (d) the volume fraction of ferromagnetic region in (Ba0.8K0.2)(Zn0.85Mn0.15)2As2 derived from ZF and WTF process, and the illustration is a M/MS(T) image of a sample under 5 Oe field[18].

    图 6  (a) (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, Mn单质以及其他含Mn化合物的Mn L2,3边的XAS图像[42]; (b) (Ba0.904K0.096)(Zn0.805Mn0.195)2As2在非共振和共振能光子条件下获得的ARPES谱图以及对应的能量二阶导的谱图[43]

    Figure 6.  (a) Mn L2,3-edge XAS spectra of (Ba0.7K0.3)(Zn0.85Mn0.15)2As2, Mn and other compounds containing Mn ions[42]; (b) ARPES spectra and corresponding second derivative spectra of (Ba0.904K0.096)(Zn0.805Mn0.195)2As2 taken with on- and off-resonance[43].

    图 7  (a) (Ba,K)(Zn0.85Mn0.15)2As2畸变量随温度的变化曲线; (b)含有以及未含有K掺杂情况下的(Ba1–xKx)(Zn0.85Mn0.15)2As2样品中子全散射的PDF拟合结果与实验结果的残差(垂直虚线代表最近邻Mn—Mn间距); (c) 2 K和300 K下(Ba0.7K0.3)(Zn0.85Mn0.15)2As2样品磁性PDF图像(垂线代表Mn—Mn键长); (d) 长程铁磁模型和最近邻模型拟合下磁性PDF的比例系数与温度的关系[44]

    Figure 7.  (a) Temperature-dependent structure distortion of (Ba,K)(Zn0.85Mn0.15)2As2; (b) nuclear PDF fit residuals for (Ba1–xKx)(Zn0.85Mn0.15)2As2 (vertical dashed line represents the nearest neighbor Mn—Mn distance); (c) magnetic PDF patterns for (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 at 2 K and 300 K (vertical line represents the Mn—Mn bond length); (d) magnetic PDF scale factors from LRO model and NN model at varying temperatures [44].

    图 8  (Ba0.8K0.2)(Zn0.95Mn0.05)2As2在压力作用下晶格常数的变化. 左下插图为层间As—As间距随压力的变化, 右上插图为As—Zn—As夹角随压力的变化[49]

    Figure 8.  Pressure-dependent lattice parameters of (Ba0.8K0.2)(Zn0.95Mn0.05)2As2. Lower-left inset is the pressure-dependent inter-layered As—As distance and upper-right inset is the pressure-dependent As—Zn—As bond angle[49].

    图 9  (a) (Ca,Na)(Cd,Mn)2As2晶体结构; (b) 在(Sr,Na)(Cd,Mn)2As2和(Ca,Na)(Cd,Mn)2As2中的CdAs四面体Cd—As键长与As—Cd—As键角的对比; (c) (Sr,Na)(Cd,Mn)2As2样品的M(T)曲线; (d) (Ca,Na)(Cd,Mn)2As2样品的M(T)曲线, 插图为磁化率倒数-温度关系[20,52]

    Figure 9.  (a) Crystal structure of (Ca,Na)(Cd,Mn)2As2; (b) comparison of Cd—As distance and As—Cd—As bond angle between (Sr,Na)(Cd,Mn)2As2 and (Ca,Na)(Cd,Mn)2As2; (c) temperature-dependent magnetization of (Sr,Na)(Cd,Mn)2As2; (d) temperature-dependent magnetization of (Ca,Na)(Cd,Mn)2As2, the inset is the Curie-Wiess fitting [20,52].

    图 10  (a) 零偏压下归一化G/G0随温度的变化关系, 插图为Pb/(Ba,K)(Zn,Mn)2As2安德烈夫反射结示意图; (b)不同温度下Pb/(Ba,K)(Zn,Mn)2As2安德烈夫反射谱以及在修正BTK理论模型下拟合的结果[21]

    Figure 10.  (a) Temperature-dependent normalized G/G0 and the sketch of the Pb/(Ba,K)(Zn,Mn)2As2 Andreev reflection junction; (b) Andreev reflection spectra of Pb/(Ba,K)(Zn,Mn)2As2 junction and the modified BTK fit at different temperature[21].

    图 11  (a) Li(Zn,Mn)As, LiMnAs和LiFeAs的晶体结构和晶胞参数的对比; (b) (Ba,K)Fe2As2, (Ba,K)(Zn,Mn)2As2和BaMn2As2的晶体结构和晶胞参数的对比[17]

    Figure 11.  (a) Comparison of crystal structure and lattice parameter among Li(Zn,Mn)As, LiMnAs and LiFeAs; (b) comparison of crystal structure and lattice parameter among (Ba,K)Fe2As2, (Ba,K)(Zn,Mn)2As2 and BaMn2As2[17].

    图 12  稀磁半导体发展路线图[1]

    Figure 12.  Roadmap of DMS[1].

  • [1]

    Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S, Swaminathan R 2015 IEEE Trans. Magn. 51 0800511Google Scholar

    [2]

    Furdyna J K 1991 Diluted Magnetic Semiconductors (Washington, D. C: National Academy Press

    [3]

    Zhao J H 2016 Chin. Sci. Bull. 61 1401Google Scholar

    [4]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [5]

    Žutić I, Zhou T 2018 Sci. China Phys. Mech. 61 067031Google Scholar

    [6]

    Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [7]

    Wei D 2023 J. Semicond. 44 040401Google Scholar

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29Google Scholar

    [9]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [10]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [11]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [12]

    Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P, von Molnar S 2011 Nano Lett. 11 2584Google Scholar

    [13]

    Kennedy D, Norman C 2005 Science 309 75Google Scholar

    [14]

    Glasbrenner J K, Zutic I, Mazin I I 2014 Phys. Rev. B 90 140403(RGoogle Scholar

    [15]

    Mašek J, Kudrnovský J, Máca F, Gallagher B, Campion R, Gregory D, Jungwirth T 2007 Phys. Rev. Lett. 98 067202Google Scholar

    [16]

    Liu X Y, Riney L, Guerra J, Powers W, Wang J S, Furdyna J K, Assaf B A 2022 J. Semicond. 43 112502Google Scholar

    [17]

    Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A. A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 422Google Scholar

    [18]

    Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Boni P, Jin C Q 2013 Nat. Commun. 4 1442Google Scholar

    [19]

    Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q, Deng Z, Zhu J, Jin C Q 2014 Chin. Sci. Bull. 59 2524Google Scholar

    [20]

    Chen B J, Deng Z, Li W, Gao M, Li Z, Zhao G Q, Yu S, Wang X, Liu Q Q, Jin C Q 2016 J. Appl. Phys. 120 083902Google Scholar

    [21]

    Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J, Li Y Q, Jin C Q 2017 Sci. Rep. 7 14473Google Scholar

    [22]

    Zhao G Q, Deng Z, Jin C Q 2019 J. Semicond. 40 081505Google Scholar

    [23]

    Han W, Zhao K, Wang X, Liu Q Q, Ning F L, Deng Z, Liu Y, Zhu J, Ding C, Man H Y, Jin C Q 2013 Sci. China Phys. Mech. 56 2026Google Scholar

    [24]

    Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, Jin C Q 2013 Phys. Rev. B 88 081203(RGoogle Scholar

    [25]

    Ning F L, Man H Y, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H, Chen B J 2014 Phys. Rev. B 90 085123Google Scholar

    [26]

    Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, Jin C Q 2019 Sci. Rep. 9 7490Google Scholar

    [27]

    Yu S, Peng Y, Zhao G Q, Zhao J F, Wang X C, Zhang J, Deng Z, Jin C Q 2023 J. Semicond. 44 032501Google Scholar

    [28]

    Man H Y, Guo S L, Sui Y, Guo Y, Chen B J, Wang H D, Ding C, Ning F L 2015 Sci. Rep. 5 15507Google Scholar

    [29]

    Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H D, Deng Z, Jin C Q, Uemura Y J, Ning F L 2019 Phys. Rev. B 99 155201Google Scholar

    [30]

    Zhao K, Chen B J, Deng Z, Han W, Zhao G Q, Zhu J L, Liu Q Q, Wang X C, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Zhang G M, Uemura Y J, Jin C Q 2014 J. Appl. Phys. 116 163906Google Scholar

    [31]

    Dong J O, Zhao X Q, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Ning F L 2022 J. Semicond. 43 072501Google Scholar

    [32]

    Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T, Ning F L 2013 Phys. Rev. B 88 041102(RGoogle Scholar

    [33]

    Yang X J, Li Y K, Shen C, Si B Q, Sun Y L, Tao Q, Cao G H, Xu Z, Zhang F 2013 Appl. Phys. Lett. 103 022410Google Scholar

    [34]

    Chen B J, Deng Z, Li W M, Gao M R, Zhao J F, Zhao G Q, Yu S, Wang X C, Liu Q Q, Jin C Q 2016 AIP Adv. 6 115014Google Scholar

    [35]

    Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q, Jin C Q 2016 Chin. Phys. B 25 077503Google Scholar

    [36]

    Zhao X Q, Dong J O, Fu L C, Gu Y L, Zhang R F, Yang Q L, Xie L F, Tang Y S, Ning F L 2022 J. Semicond. 43 112501Google Scholar

    [37]

    Deng Z, Wang X, Wang M Q, Shen F, Zhang J N, Chen Y S, Feng H L, Xu J W, Peng Y, Li W M, Zhao J F, Wang X C, Valvidares M, Francoual S, Leupold O, Hu Z W, Tjeng L H, Li M R, Croft M, Zhang Y, Liu E K, He L H, Hu F X, Sun J R, Greenblatt M, Jin C Q 2023 Adv. Mater. 35 2370120Google Scholar

    [38]

    Dunsiger S R, Carlo J P, Goko T, Nieuwenhuys G, Prokscha T, Suter A, Morenzoni E, Chiba D, Nishitani Y, Tanikawa T, Matsukura F, Ohno H, Ohe J, Maekawa S, Uemura Y J 2010 Nat. Mater. 9 299Google Scholar

    [39]

    Kobayashi M, Muneta I, Takeda Y, Harada Y, Fujimori A, Krempaský J, Schmitt T, Ohya S, Tanaka M, Oshima M, Strocov V N 2014 Phys. Rev. B 89 205204Google Scholar

    [40]

    Edmonds K, van der Laan G, Panaccione G 2015 Semicond. Sci. Technol. 30 043001Google Scholar

    [41]

    Souma S, Chen L, Oszwaldowski R, Sato T, Matsukura F, Dietl T, Ohno H, Takahashi T 2016 Sci. Rep. 6 27266Google Scholar

    [42]

    Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 91 140401(RGoogle Scholar

    [43]

    Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q, Fujimori A 2015 Phys. Rev. B 92 235120Google Scholar

    [44]

    Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J, Billinge S J L 2016 Phys. Rev. B 94 094102Google Scholar

    [45]

    Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A, Inosov D S 2018 Phys. Rev. B 97 104418Google Scholar

    [46]

    Csontos M, Mihaly G, Janko B, Wojtowicz T, Liu X, Furdyna J K 2005 Nat. Mater. 4 447Google Scholar

    [47]

    Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Yang W G, Jin C Q 2017 Chin. Phys. Lett. 34 067501Google Scholar

    [48]

    Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412Google Scholar

    [49]

    Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G, Jin C Q 2016 Phys. Rev. B 93 224403Google Scholar

    [50]

    Deng Z, Retuerto M, Liu S, Croft M, Stephens P W, Calder S, Li W M, Chen B J, Jin C Q, Hu Z, Li M R, Lin H J, Chan T S, Chen C T, Kim S W, Greenblatt M 2018 Chem. Mater. 30 7047Google Scholar

    [51]

    Deng Z, Kang C J, Croft M, Li W M, Shen X, Zhao J F, Yu R, Jin C Q, Kotliar G, Liu S, Tyson T A, Tappero R, Greenblatt M 2020 Angew. Chem. Int. Ed. 59 8240Google Scholar

    [52]

    Yu S, Zhao G Q, Peng Y, Zhu X H, Wang X C, Zhao J F, Cao L P, Li W M, Li Z M, Deng Z, Jin C Q 2019 APL Mater. 7 101119Google Scholar

    [53]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576Google Scholar

    [54]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

  • [1] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240246
    [2] Li Chun-Lei, Zheng Jun, Wang Xiao-Ming, Xu Yan. Spin-polarized transport properties in diluted-magnetic-semiconductor/semiconductor superlattices under light-field assisted. Acta Physica Sinica, 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [3] Sun Jing-Qi, Wu Xu-Cai, Que Zhi-Xiong, Zhang Wei-Bing. Prediction of ferromagnetic materials with high Curie temperature based on material composition information. Acta Physica Sinica, 2023, 72(18): 180202. doi: 10.7498/aps.72.20230382
    [4] Zheng Long-Li, Qi Shi-Chao, Wang Chun-Ming, Shi Lei. Piezoelectric, dielectric, and ferroelectric properties of high Curie temperature bismuth layer-structured bismuth titanate-tantalate (Bi3TiTaO9). Acta Physica Sinica, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [5] Deng Zheng, Zhao Guo-Qiang, Jin Chang-Qing. Recent progress of a new type diluted magnetic semiconductors with independent charge and spin doping. Acta Physica Sinica, 2019, 68(16): 167502. doi: 10.7498/aps.68.20191114
    [6] Hou Qing-Yu, Xu Zhen-Chao, Wu Yun, Zhao Er-Jun. Effects of Cu doped ZnO diluted magnetic semiconductors on magnetic and electrical performance from simulation and calculation. Acta Physica Sinica, 2015, 64(16): 167201. doi: 10.7498/aps.64.167201
    [7] Wang Lu-Xia, Chang Kai-Nan. Study on electron transfer in a heterogeneous system using a density matrix theory approach. Acta Physica Sinica, 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [8] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [9] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [10] Wang Shi-Wei, Zhu Ming-Yuan, Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [11] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [12] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [13] Yang Wei, Ji Yang, Luo Hai-Hui, Ruan Xue-Zhong, Wang Wei-Zhu, Zhao Jian-Hua. Electronic noise of diluted magnetic semiconductor (Ga,Mn)As around Curie point. Acta Physica Sinica, 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [14] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [15] Du Jian, Zhang Peng, Liu Ji-Hong, Li Jin-Liang, Li Yu-Xian. Spin-tunneling time and transport in a ferromagnetic/semiconductor/ferromagnetic heterojunction with a δ tunnel barrier. Acta Physica Sinica, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
    [16] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [17] Wang Yi, Sun Lei, Han De-Dong, Liu Li-Feng, Kang Jin-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [18] Lin Qiu-Bao, Li Ren-Quan, Zeng Yong-Zhi, Zhu Zi-Zhong. Electronic and magnetic properties of 3d transition-metal-doped Ⅲ-Ⅴ semiconductors:first-principle calculations. Acta Physica Sinica, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [19] Shen Jun, Li Yang-Xian, Hu Feng-Xia, Wang Guang-Jun, Zhang Shao-Ying. Magnetic properties and magnetic entropy change of Ce2Fe16Al near Curie temperature. Acta Physica Sinica, 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  1202
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2023
  • Accepted Date:  19 December 2023
  • Available Online:  02 January 2024
  • Published Online:  05 January 2024

/

返回文章
返回