搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CrO2单层:一种兼具高居里温度和半金属特性的二维铁磁体

刘冰心 李宗良

引用本文:
Citation:

CrO2单层:一种兼具高居里温度和半金属特性的二维铁磁体

刘冰心, 李宗良

CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity

Liu Bing-Xin, Li Zong-Liang
PDF
导出引用
  • 半金属铁磁体在费米能级附近具有特殊的能带结构,电子极化率可高达100%,在自旋电子学领域备受关注。但是大部分铁磁半金属材料的居里温度远低于室温,这大大限制了二维铁磁半金属材料的实际应用。因此寻找具有高居里温度的半金属铁磁体是一项具有挑战性的工作。本文基于密度泛函理论框架下的第一性原理方法,研究了过渡金属氧化物CrO2单层的晶体结构、电子特性、基态磁性和铁磁相变。形成能计算、声子谱计算和分子动力学模拟表明CrO2具有动力学稳定性和热稳定性,弹性常数计算表明CrO2具有力学稳定性。基于GGA + U和SCAN方法的自旋极化计算表明CrO2单层的磁基态是铁磁态。采用GGA + U方法计算了CrO2的电子态密度和能带结构,CrO2被确认为一种宽带隙的二维铁磁半金属。运用蒙特卡罗模拟方法求解Heisenberg模型,得到CrO2单层是一种居里温度超过400 K的二维本征半金属铁磁体。CrO2单层的高居里温度在二维铁磁材料中并不多见,在半金属材料中更为稀少,这将使它成为制备自旋电子器件和研究自旋量子效应的理想材料。
    Owing to the complete spin-polarization of electronic states near Fermi energy, half-metallic ferromagnets, especially two-dimensional half-metallic ferromagnets, have garnered significant attention in the field of spintronics. However, the practical application of these materials is greatly hindered by their low Curie temperatures. Therefore, the exploration of high Curie temperature half-metallic ferromagnets poses a necessary and challenging task. In this study, we predict a two-dimensional transition metal oxide, CrO2 monolayer, and employed first-principles calculations to investigate the crystal structure, electronic properties, magnetic ground state, and ferromagnetic phase transition. The calculations on phonon spectrum, elastic constant, and molecular dynamics simulations indicate that CrO2 monolayer is dynamically, thermally, and mechanically stable. The convex hull diagram of Cr-O systems shows the hull energy of the predicted CrO2 layer is only 0.18 eV, further confirming the structural stability and large possibility for experimental fabrication. More importantly, the electronic and magnetic properties of CrO2 monolayer demonstrate that it is a two-dimensional ferromagnetic half-metal with wide band gap. Five d suborbitals are divided into eg and t2g orbitals because of the crystal field of Cr atom at the center of O tetrahedron, and the spin-polarization of eg orbitals make a major contribution to the moment around Cr atom. The ferromagnetic coupling along Cr-O-Cr chain is dominated by the superexchange interaction bridged by O 2p orbital, similar to the typical Mn-O-Mn superexchange model. The magnetic behavior of the Cr spin lattice in a CrO2 monolayer is described by a two-dimensional Heisenberg model, in which the exchange coupling anisotropy is ignored and the single ion anisotropy is the main consideration. By solving the Heisenberg model using the Monte Carlo simulation method, the Curie temperature is determined to be over 400 K. The high Curie temperature ferromagnetism is rare in two-dimensional ferromagnetic materials and even rarer in semi-metallic materials, which makes it an ideal material for the fabrication of spintronic devices and the study of spin quantum effects.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang H 2015 ACS Nano 9 9451

    [3]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265

    [4]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270

    [5]

    Gong C, Zhang X 2019 Science 363 eaav4450

    [6]

    Balan A P, Radhakrishnan S, Woellner C F, Sinha S K, Deng L, de los Reyes C, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, van Aken P A, Varghese O K, Tiwary C S, Iyer A M M R, Ajayan P M 2018 Nat. Nanotechnol. 13 602

    [7]

    Balan A P, Radhakrishnan S, Kumar R, Neupane R, Sinha S K, Deng L Z, de los Reyes C A, Apte A, Rao B M, Paulose M, Vajtai R, Chu C W, Costin G, Martí A A, Varghese O K, Singh A K, Tiwary C S, Anantharaman M R, Ajayan P M 2018 Chem. Mater. 30 5923

    [8]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056

    [9]

    Wang H D, Lei P H, Mao X Y, Kong X, Ye X Y, Wang P F, Wang Y, Qin X, Meijer J, Zeng H L, Shi F Z, Du J F 2022 Chin. Phys. Lett. 39 047601

    [10]

    Feng P J, Zhang X H, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 ACS Omega 7 43316

    [11]

    Liu D P, Zhang S, Gao M, Yan X W, Xie Z Y 2021 Appl. Phys. Lett. 118 223104

    [12]

    Feng P J, Zhang S, Liu D P, Gao M, Ma F J, Yan X W, Xie Z Y 2022 J. Phys. Chem. C 126 10139

    [13]

    Liu D P, Zhang S, Gao M, Yan X W 2021 Phys. Rev. B 103 125407

    [14]

    Zhang S, Feng P J, Liu D P, Wu H F, Gao M, Xu T S, Xie Z Y, Yan X W 2022 Phys. Rev. B 106 235402

    [15]

    Wang Y, Guo Y, Wang Z K, Fu L, Zhang Y, Xu Y J, Yuan S J, Pan H Z, Du Y W, Wang J L, Tang N J 2021 ACS Nano 15 12069

    [16]

    Wang Y, Xu W, Fu L, Zhang Y, Wu Y Z, Wu L T, Yang D Y, Peng S Z, Ning J, Zhang C, Cui X, Zhong W, Liu Y, Xiong Q H, Han G Q, Hao Y 2023 ACS Appl. Mater. Interfaces 15 54797

    [17]

    Wang Y, Xu W, Yang D Y, Zhang Y, Xu Y J, Cheng Z X, Mi X K, Wu Y Z, Liu Y, Hao Y, Han G Q 2023 ACS Nano 17 24320

    [18]

    Zha H M, Li W, Zhang G J, Liu W J, Deng L W, Jiang Q, Ye M, Wu H, Chang H X, Qiao S 2023 Chin. Phys. Lett. 40 087501

    [19]

    Huang P, Zhang P, Xu S G, Wang H D, Zhang X W, Zhang H 2020 Nanoscale 12 2309

    [20]

    Lin Z C, Peng Y X, Wu B C, Wang C S, Luo Z C, Yang J B 2022 Chin. Phys. B 31 087506

    [21]

    Cava R J 2000 J. Am. Ceram. Soc. 83 5

    [22]

    Wilson R M 2019 Phys. Today 72 19

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477

    [24]

    Rasmussen F A, Thygesen K S 2015 J. Phys. Chem. C 119 13169

    [25]

    Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S 2009 Phys. Rev. B 80 235119

    [26]

    Yang J, Jiang Y L, Li L J, Muhire E, Gao M Z 2016 Nanoscale 8 8170

    [27]

    Zhang F, Zhu J J, Zhang D L, Schwingenschlögl U, Alshareef H N 2017 Nano Lett. 17 1302

    [28]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [29]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [30]

    Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211

    [31]

    Dedkov Yu S, Rüdiger U, Güntherodt G 2002 Phys. Rev. B 65 064417

    [32]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585

    [33]

    Xie W H, Liu B G, Pettifor D G 2003 Phys. Rev. B 68 134407

    [34]

    Cheng Z M, Wang X Q, Wang F, Lu L Y, Liu G B, Duan Z F, Nie Z X 2011 Acta Phys. Sin. 60 096301(in Chinese) [程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀2011物理学报60 096301]

    [35]

    Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677

    [36]

    Alijani V, Winterlik J, Fecher G H, Naghavi S S, Felser C 2011 Phys. Rev. B 83 184428

    [37]

    Xu J L, Jia L Y, Jin X Q, Hao X N, Ma L, Hou D L 2019 Acta Phys. Sin. 68 157501(in Chinese) [许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录2019物理学报68 157501]

    [38]

    Zhao J T, Zhao K, Wang J J, Yu X Q, Yu J, Wu S X 2012 Acta Phys. Sin. 61 213102(in Chinses) [赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械2012物理学报61 213102]

    [39]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [43]

    Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402

    [44]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [45]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [46]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635

    [47]

    Born M, Huang K, Lax M 1955 Am. J. Phys. 23 474

    [48]

    Wooster W A, Wooster N 1931 Nature 127 782

    [49]

    Dufek V, Petrů F, Brožek V 1967 Monatsh. Chem. 98 2424

    [50]

    Zhang Q, Xu M K, Shen Z R, Wei Q 2017 J. Mater. Sci.: Mater. Electron. 28 12056

    [51]

    Zhou S M, Zhu G Y, Wang Y Q, Lou S Y, Hao Y M 2011 Chem. Eng. J. 174 432

    [52]

    Bärnighausen H, Brauer G, Schultz N 1965 Z. Anorg. Allg. Chem. 338 250

    [53]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105

    [54]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

    [55]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [56]

    Sun J, Ruzsinszky A, Perdew J P 2015 Phys. Rev. Lett. 115 036402

    [57]

    Graf T, Felser C, Parkin S S P 2011 Prog. Solid. State Ch. 39 1

    [58]

    Zhang Y H, Wang B, Guo Y, Li Q, Wang J L 2021 Comput. Mater. Sci. 197 110638

    [59]

    Ma F J, Lu Z Y, Xiang T 2008 Phys. Rev. B 78 224517

    [60]

    Xu C, Feng J, Xiang H, Bellaiche L 2018 npj Comput. Mater. 4 57

    [61]

    Šabani D, Bacaksiz C, Milošević M V 2020 Phys. Rev. B 102 014457

    [62]

    Zhang J 2023 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [张杰2023博士学位论文(北京: 中国科学院物理研究所)]

  • [1] 孙敬淇, 吴绪才, 阙志雄, 张卫兵. 基于材料组分信息的高居里温度铁磁材料预测. 物理学报, doi: 10.7498/aps.72.20230382
    [2] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展. 物理学报, doi: 10.7498/aps.72.20222219
    [3] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, doi: 10.7498/aps.70.20210949
    [4] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, doi: 10.7498/aps.70.20210223
    [5] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20191246
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, doi: 10.7498/aps.67.20181129
    [7] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, doi: 10.7498/aps.65.127501
    [8] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, doi: 10.7498/aps.64.026602
    [9] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, doi: 10.7498/aps.64.013101
    [10] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.63.163101
    [11] 王芳, 汪金芝, 冯唐福, 孙仁兵, 余盛. La(Fe, Si)13化合物的居里温度机制. 物理学报, doi: 10.7498/aps.63.127501
    [12] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [13] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, doi: 10.7498/aps.62.247102
    [14] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, doi: 10.7498/aps.60.046301
    [15] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.56.5359
    [16] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, doi: 10.7498/aps.56.6592
    [17] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, doi: 10.7498/aps.55.6042
    [18] 徐绍言, 陆博翘, 郑亚茹, 孙 雁. 过渡金属Fe,Co,Ni居里点附近热电势的实验研究. 物理学报, doi: 10.7498/aps.55.2529
    [19] 郝延明, 赵 伟, 高 艳. Y2(Fe1-x-y,Coy,Crx)17化合 物的结构及居里温度. 物理学报, doi: 10.7498/aps.52.2612
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应. 物理学报, doi: 10.7498/aps.50.319
计量
  • 文章访问数:  213
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-19

/

返回文章
返回