Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors

Zhou Hai-Liang Zhang Min-Xuan Fang Liang

Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors

Zhou Hai-Liang, Zhang Min-Xuan, Fang Liang
PDF
Get Citation
  • Due to carrier band-to-band tunneling (BTBT) through channel-source/drain contacts, traditional MOS(metal oxide semiconductor)-like carbon nanotube field effect transistors (CNFETs) suffer from quasi-ambipolar transport property, leaving much negative impacts on device performance and its application in circuits. To suppress such quasi-ambipolar behavior, a novel device design based on dual-gate-material device structure is proposed. The modeling results show that, with proper choice of tuning gate material, this device design can increase the ON-OFF current ratio by 6—9 orders of magnitude, tune the threshold region effectively and keep the sub-threshold slope immune from it. In addition, the quasi-ambipolar transport characteristic of C-CNFETs can be suppressed effectively using such novel device design. Further study reveals that the performance of the proposed design depends highly on the choice of tuning gate material, and the quantum capacitance in CNFETs has great effect on not only its subthreshold slope but also its transport polarity.
    • Funds:
    [1]

    Martel R, Wong H S, Chan K, Avouris P 2001 IEDM Tech. Digest Washington, p159

    [2]

    Zhang Z X, Hou S M, Zhao X Y, Zhang H, Sun J P, Liu W M, Xue Z Q, Shi Z J, Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [3]

    Tang N S, Yan X H, Ding J H 2005 Acta Phys. Sin. 54 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 54 333 ]

    [4]

    Javey A, Guo J, Wang Q, Lundstron M, Dai H 2003 Lett. Nature 424 654

    [5]

    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J, Klinke C, Afzali A, Chan K, Avouris P 2004 IEDM Tech. Digest San Francisco p695

    [7]

    Chen J, Klinke C, Afzali A, Avouris P 2005 Appl. Phys. Lett. 86 123108

    [8]

    Lin Y M, Appenzeller J, Knoch J, Avouris P 2005 IEEE Trans. Nano. 4 481

    [9]

    Pourfath M, Ungersboeck E, Gehring A, Kosina H 2005 J. Computational Electronics 4 75

    [10]

    Appenzeller J, Lin Y M, Knock J, Chen Z H, Aviouris Ph 2005 IEEE Trans. Electron Devices 52 122568

    [11]

    Chen Z H, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y, Ohno Y, Kishimoto S, Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan, Oct., 2006 p247

    [13]

    Javey A, Tu R, Farmer D, Guo J, Gordon D, Dai H 2005 Nano Lett. 5 345

    [14]

    Long W, Ou H, Kuo J M 1999 IEEE Trans. Electron Device 46 865

    [15]

    Kumar M J, Chaudhry A 2004 IEEE Trans. Electron Devices 51 569

    [16]

    Li Z C 2009 Chin. Phys. Lett. 26 018502

    [17]

    Lee J H, Lee J B, Lee J H 1997 U.S.Patent 5670400

    [18]

    James J C, Luigi C, Mark R V 2009 U.S.Patent 7612422

    [19]

    Luan S Z, Liu H X, Jia R X 2009 Sci. Chin. Ser. E 52 2400

    [20]

    Xiang Q, Jeon J 2001 U. S. Patent 6187657

    [21]

    Muhammad M H, Naim M, Joel B, Jason S, David B, Zhibo Z 2005 Electrochem. Solid-State Lett. 28 333

    [22]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [23]

    Zhou H L, Zhang M X, Hao Y 2009 IEEE International NanoElectronics Conference, HongKong, China, Jan. 3—8, 2009 p53

    [24]

    Venugopal R, Ren Z, Datta S, Lundstrom M S, Jovanovic D 2002 J. Appl. Phys. 92 3730

    [25]

    Guo J, Ali J, Dai H J, Mark L 2004 IEDM Tech. Digest San Francisco, Dec, 2004 pp703—706

    [26]

    Fiori G, Iannaccone G, Klimeck G 2006 IEEE Trans. Electron Device 53 1782

    [27]

    Fiori G, Iannaccone G, Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [28]

    Appzenzeller J, Knoch J, Radosavljevic, Avouris P 2004 Phys. Rev. Lett. 92 6802

    [29]

    Knoch J, Appzenzeller J 2008 Phys. Stat. Sol. (a) 205 679

    [30]

    Yu B, Chang L, Ahmed S, Wang H 2002 IEEE Trans. Electron. 85 1052

    [31]

    Avouris P 2002 Chem. Phys. 281 429

    [32]

    Yong K F, Frederikse H P R 1973 J. Phys.Chem.Ref.Data 2 313

    [33]

    John D L, Castro L C, Pulfrey D L 2004 J. Appl. Phys. 96 65180

    [34]

    Rahman A, Guo J, Datta S, Lundstrom M S 2003 IEEE Trans. Electron Devices 50 1853

    [35]

    Burke P J 2003 IEEE Trans. Nanotechnol. 2 55

  • [1]

    Martel R, Wong H S, Chan K, Avouris P 2001 IEDM Tech. Digest Washington, p159

    [2]

    Zhang Z X, Hou S M, Zhao X Y, Zhang H, Sun J P, Liu W M, Xue Z Q, Shi Z J, Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [3]

    Tang N S, Yan X H, Ding J H 2005 Acta Phys. Sin. 54 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 54 333 ]

    [4]

    Javey A, Guo J, Wang Q, Lundstron M, Dai H 2003 Lett. Nature 424 654

    [5]

    Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J, Klinke C, Afzali A, Chan K, Avouris P 2004 IEDM Tech. Digest San Francisco p695

    [7]

    Chen J, Klinke C, Afzali A, Avouris P 2005 Appl. Phys. Lett. 86 123108

    [8]

    Lin Y M, Appenzeller J, Knoch J, Avouris P 2005 IEEE Trans. Nano. 4 481

    [9]

    Pourfath M, Ungersboeck E, Gehring A, Kosina H 2005 J. Computational Electronics 4 75

    [10]

    Appenzeller J, Lin Y M, Knock J, Chen Z H, Aviouris Ph 2005 IEEE Trans. Electron Devices 52 122568

    [11]

    Chen Z H, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y, Ohno Y, Kishimoto S, Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan, Oct., 2006 p247

    [13]

    Javey A, Tu R, Farmer D, Guo J, Gordon D, Dai H 2005 Nano Lett. 5 345

    [14]

    Long W, Ou H, Kuo J M 1999 IEEE Trans. Electron Device 46 865

    [15]

    Kumar M J, Chaudhry A 2004 IEEE Trans. Electron Devices 51 569

    [16]

    Li Z C 2009 Chin. Phys. Lett. 26 018502

    [17]

    Lee J H, Lee J B, Lee J H 1997 U.S.Patent 5670400

    [18]

    James J C, Luigi C, Mark R V 2009 U.S.Patent 7612422

    [19]

    Luan S Z, Liu H X, Jia R X 2009 Sci. Chin. Ser. E 52 2400

    [20]

    Xiang Q, Jeon J 2001 U. S. Patent 6187657

    [21]

    Muhammad M H, Naim M, Joel B, Jason S, David B, Zhibo Z 2005 Electrochem. Solid-State Lett. 28 333

    [22]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [23]

    Zhou H L, Zhang M X, Hao Y 2009 IEEE International NanoElectronics Conference, HongKong, China, Jan. 3—8, 2009 p53

    [24]

    Venugopal R, Ren Z, Datta S, Lundstrom M S, Jovanovic D 2002 J. Appl. Phys. 92 3730

    [25]

    Guo J, Ali J, Dai H J, Mark L 2004 IEDM Tech. Digest San Francisco, Dec, 2004 pp703—706

    [26]

    Fiori G, Iannaccone G, Klimeck G 2006 IEEE Trans. Electron Device 53 1782

    [27]

    Fiori G, Iannaccone G, Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [28]

    Appzenzeller J, Knoch J, Radosavljevic, Avouris P 2004 Phys. Rev. Lett. 92 6802

    [29]

    Knoch J, Appzenzeller J 2008 Phys. Stat. Sol. (a) 205 679

    [30]

    Yu B, Chang L, Ahmed S, Wang H 2002 IEEE Trans. Electron. 85 1052

    [31]

    Avouris P 2002 Chem. Phys. 281 429

    [32]

    Yong K F, Frederikse H P R 1973 J. Phys.Chem.Ref.Data 2 313

    [33]

    John D L, Castro L C, Pulfrey D L 2004 J. Appl. Phys. 96 65180

    [34]

    Rahman A, Guo J, Datta S, Lundstrom M S 2003 IEEE Trans. Electron Devices 50 1853

    [35]

    Burke P J 2003 IEEE Trans. Nanotechnol. 2 55

  • [1] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 1-11. doi: 10.7498/aps.69.20191718
    [2] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
  • Citation:
Metrics
  • Abstract views:  2467
  • PDF Downloads:  633
  • Cited By: 0
Publishing process
  • Received Date:  29 October 2009
  • Accepted Date:  26 November 2009
  • Published Online:  15 July 2010

Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors

  • 1. Key Laboratory of Parallel and Distribution Processing, School of Computer Science, National University of Defense Technology, Changsha 410073, China

Abstract: Due to carrier band-to-band tunneling (BTBT) through channel-source/drain contacts, traditional MOS(metal oxide semiconductor)-like carbon nanotube field effect transistors (CNFETs) suffer from quasi-ambipolar transport property, leaving much negative impacts on device performance and its application in circuits. To suppress such quasi-ambipolar behavior, a novel device design based on dual-gate-material device structure is proposed. The modeling results show that, with proper choice of tuning gate material, this device design can increase the ON-OFF current ratio by 6—9 orders of magnitude, tune the threshold region effectively and keep the sub-threshold slope immune from it. In addition, the quasi-ambipolar transport characteristic of C-CNFETs can be suppressed effectively using such novel device design. Further study reveals that the performance of the proposed design depends highly on the choice of tuning gate material, and the quantum capacitance in CNFETs has great effect on not only its subthreshold slope but also its transport polarity.

Reference (35)

Catalog

    /

    返回文章
    返回