Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High electron mobility lattice-matched InAlN/GaN materials

Zhang Jin-Feng Wang Ping-Ya Xue Jun-Shuai Zhou Yong-Bo Zhang Jin-Cheng Hao Yue

High electron mobility lattice-matched InAlN/GaN materials

Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue
PDF
Get Citation
  • InAlN can be in-plane lattice matched (LM) to GaN, and the formed InAlN/GaN heterostructure is one kind of materials with high conductivity to be used in GaN-based high electron mobility transistors (HEMTs). It is reported that the high-mobility InAlN/GaN material is grown by using pulsed metal organic chemical vapor deposition (PMOCVD) on sapphire, and the Hall electron mobility reaches 949 and 2032 cm2/Vs at room temperature and 77 K, respectively. The two-dimensional electron gas (2DEG) is formed in the sample. When 1.2 nm thick AlN space layer is inserted to form InAlN/AlN/GaN structure, the Hall electron mobility increases to 1437 and 5308 cm2/Vs at room temperature and 77 K, respectively. It is shown by analyzing the results of X-ray diffraction and atomic force microscopy and the features of PMOCVD that the crystal quality of InAlN/GaN material is quite high, and the InAlN layer LM to GaN has smooth surface and interface. The high mobility characteristics of InAlN/GaN and InAlN/AlN/GaN materials are ascribed to the fact that the 2DEG has a comparatively low sheet density (1.61013-1.81013 cm-2), the alloy disorder scattering is weakened in the high-quality InAlN crystal since its compositions are evenly distributed, and the interface roughness scattering is alleviated at the smooth interface where the 2DEG is located.
    • Funds:
    [1]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [2]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese) [李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 物理学报 57 2450]

    [3]
    [4]
    [5]

    Kuzmik J 2001 IEEE Electron. Dev. Lett. 22 510

    [6]
    [7]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [8]
    [9]

    Katz O, Mistele D, Meyler B, Bahir G, J. Salzman 2004 Electron. Lett. 40 1304

    [10]
    [11]

    Karpov S Y, Podolskaya N, Zhmakin I A, Zhmakin A I 2004 Phys. Rev. B 70 235203

    [12]
    [13]

    Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213

    [14]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D, 2007 Phys. Stat. Sol. (a) 204 2019

    [15]
    [16]
    [17]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [18]
    [19]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [20]
    [21]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [22]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese) [倪金玉、郝 跃、张进成、段焕涛、张金风 2009 物理学报 58 4925]

    [23]
    [24]
    [25]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [26]
    [27]

    Shur M, Gelmont B, Khan M A 1996 J. Electron. Mater. 25 777

    [28]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 Proceedings of 15th National Conferance on Compound Semiconductor Materials, Microwave Devices and Optoelectronic Derices, Guangzhou, p54 (in Chinese) [刘 波、尹甲运、李 佳、冯志宏、冯 震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 广州 第54页]

    [29]
    [30]
    [31]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [32]
    [33]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [34]

    Yu L S 2006 Physics of Semiconductor Heterojunctions (2nd Edition) (Beijing: Science Press) p141 (in Chinese) [虞丽生 2006 半导体异质结物理(第二版) (北京: 科学出版社) 第141页]

    [35]
    [36]

    Jena D, Smorchkova I, Gossard A C, Mishra U K 2001 Phys. Stat. Sol. (b) 228 617

    [37]
    [38]

    Antoszewski J, Gracey M, Dell J M, Faraone L, Fisher T A, Parish G, Wu Y F, Mishra U K 2000 J. Appl. Phys. 87 3900

    [39]
    [40]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M 1997 Appl. Phys. Lett. 71 1504

    [41]
    [42]

    Bastard G 1983 Appl. Phys. Lett. 43 591

    [43]
    [44]
    [45]

    Ferry D K, Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)

    [46]
    [47]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

  • [1]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [2]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese) [李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 物理学报 57 2450]

    [3]
    [4]
    [5]

    Kuzmik J 2001 IEEE Electron. Dev. Lett. 22 510

    [6]
    [7]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [8]
    [9]

    Katz O, Mistele D, Meyler B, Bahir G, J. Salzman 2004 Electron. Lett. 40 1304

    [10]
    [11]

    Karpov S Y, Podolskaya N, Zhmakin I A, Zhmakin A I 2004 Phys. Rev. B 70 235203

    [12]
    [13]

    Ferhat M, Bechstedt F 2002 Phys. Rev. B 65 075213

    [14]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D, 2007 Phys. Stat. Sol. (a) 204 2019

    [15]
    [16]
    [17]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [18]
    [19]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [20]
    [21]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [22]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese) [倪金玉、郝 跃、张进成、段焕涛、张金风 2009 物理学报 58 4925]

    [23]
    [24]
    [25]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [26]
    [27]

    Shur M, Gelmont B, Khan M A 1996 J. Electron. Mater. 25 777

    [28]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 Proceedings of 15th National Conferance on Compound Semiconductor Materials, Microwave Devices and Optoelectronic Derices, Guangzhou, p54 (in Chinese) [刘 波、尹甲运、李 佳、冯志宏、冯 震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 广州 第54页]

    [29]
    [30]
    [31]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [32]
    [33]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [34]

    Yu L S 2006 Physics of Semiconductor Heterojunctions (2nd Edition) (Beijing: Science Press) p141 (in Chinese) [虞丽生 2006 半导体异质结物理(第二版) (北京: 科学出版社) 第141页]

    [35]
    [36]

    Jena D, Smorchkova I, Gossard A C, Mishra U K 2001 Phys. Stat. Sol. (b) 228 617

    [37]
    [38]

    Antoszewski J, Gracey M, Dell J M, Faraone L, Fisher T A, Parish G, Wu Y F, Mishra U K 2000 J. Appl. Phys. 87 3900

    [39]
    [40]

    Angerer H, Brunner D, Freudenberg F, Ambacher O, Stutzmann M 1997 Appl. Phys. Lett. 71 1504

    [41]
    [42]

    Bastard G 1983 Appl. Phys. Lett. 43 591

    [43]
    [44]
    [45]

    Ferry D K, Goodnick S M 1999 Transport in Nanostructures (Cambridge: Cambridge University Press)

    [46]
    [47]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

  • [1] Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [2] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [3] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [4] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming, Liu Jian, Liu Xin-Yu. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [6] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [7] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [8] Cui Li-Jie, Li Dong-Lin, Gao Hong-Ling, Zeng Yi-Ping, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Guo Shao-Ling, Gui Yong-Sheng, Zhou Wen-Zheng, Chu Jun-Hao. Weak anti-localization in InAlAs/InGaAs/InAlAs high mobility two-dimensional electron gas systems. Acta Physica Sinica, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [9] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [10] Gao Hong-Ling, Li Dong-Lin, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping, Zhou Wen-Zheng, Shang Li-Yan. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
  • Citation:
Metrics
  • Abstract views:  4114
  • PDF Downloads:  757
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2011
  • Accepted Date:  22 February 2011
  • Published Online:  15 November 2011

High electron mobility lattice-matched InAlN/GaN materials

  • 1. Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China

Abstract: InAlN can be in-plane lattice matched (LM) to GaN, and the formed InAlN/GaN heterostructure is one kind of materials with high conductivity to be used in GaN-based high electron mobility transistors (HEMTs). It is reported that the high-mobility InAlN/GaN material is grown by using pulsed metal organic chemical vapor deposition (PMOCVD) on sapphire, and the Hall electron mobility reaches 949 and 2032 cm2/Vs at room temperature and 77 K, respectively. The two-dimensional electron gas (2DEG) is formed in the sample. When 1.2 nm thick AlN space layer is inserted to form InAlN/AlN/GaN structure, the Hall electron mobility increases to 1437 and 5308 cm2/Vs at room temperature and 77 K, respectively. It is shown by analyzing the results of X-ray diffraction and atomic force microscopy and the features of PMOCVD that the crystal quality of InAlN/GaN material is quite high, and the InAlN layer LM to GaN has smooth surface and interface. The high mobility characteristics of InAlN/GaN and InAlN/AlN/GaN materials are ascribed to the fact that the 2DEG has a comparatively low sheet density (1.61013-1.81013 cm-2), the alloy disorder scattering is weakened in the high-quality InAlN crystal since its compositions are evenly distributed, and the interface roughness scattering is alleviated at the smooth interface where the 2DEG is located.

Reference (47)

Catalog

    /

    返回文章
    返回