Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the effect of active layer thickness on polymer solar cell performance based on optical and opto-electronic model

Li Guo-Long Huang Zhuo-Yin Li Kan Zhen Hong-Yu Shen Wei-Dong Liu Xu

Analysis of the effect of active layer thickness on polymer solar cell performance based on optical and opto-electronic model

Li Guo-Long, Huang Zhuo-Yin, Li Kan, Zhen Hong-Yu, Shen Wei-Dong, Liu Xu
PDF
Get Citation
  • Polymer solar cell with excellent performance is currently composed of the blend bulk-heterojunction formed by conjugated polymer as donor material and fullerene as acceptor material, among which P3HT and PCBM are most widely used. For the photoelectric thin film device, the optical and the electric characteristics of the active layer can affect the device performance directly. The optical constants of the active layer are obtained primarily based on the Forouhi-Bloomer model. According to the Fresnel coefficient matrix, the numbers of photons absorbed by different active layer thick devices are investigated by calculating electromagnetic field distributions inside this structure. To make a specific analysis of the thickness effect on dissociation probability of bound pairs without external excitation, the model of Onsager-Braun is adopted. Theoretical analysis shows that the active layer with a thickness of 100 nm can maximize photon absorption by the device without reducing the dissociation probability of excitons obviously. As a result, an optimal thickness of the active layer is about 100 nm, which is confirmed by the theoretical and the experimental results from the device with the structure of ITO/PEDOT/ P3HT:PC60BM /LiF/Al.
    • Funds:
    [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864

    [2]

    Feng Z H, Hou Y B, Shi Q M, Liu X J, Teng F 2010 Chin. Phys. B 19 098601

    [3]

    Kim J Y, Lee K, Coates N E, Moses Daniel, Nguyen T Q, Dante Mark, Heeger A J 2007 Science 317 222

    [4]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [5]

    Chen H Y, Hou J H, Zhang S Q, Liang Y Y , Yang G W, Yang Y, Yu L P, Wu Y, Li G 2009 Nature Photonics 3 649

    [6]

    Kumar A, Sista S, Yang Y 2009 J. Appl. Phys. 105 094512

    [7]

    Pivrikas A, Sariciftci N S, Juska G, Osterbacka R 2007 Prog. Photovolt: Res. Appl. 15 677

    [8]

    Pettersson L A A A, Roman L S, Inganas Olle 1999 J. Appl. Phys. 86 487

    [9]

    Stubinger T, Brutting W 2001 J. Appl. Phys. 90 3632

    [10]

    Zhou Y, Wu G S, Dai W, Li H B, Wang A Y 2010 Acta. Phys. Sin. 59 2356 (in Chinese)[周 毅、吴国松、代 伟、李洪波、汪爱英 2010 物理学报 59 2356]

    [11]

    Peumans P, Yakimov A, Forrest S R 2003 J. Appl. Phys. 93 3693

    [12]

    Moule A J, Meerholz K 2007 Appl. Phys. Lett. 91 061901

    [13]

    Macleod H A 2001 Thin-Film Optical Filters 3rd edn (Bristol: Institute of Physics Publishing)

    [14]

    Forouhi A R, Bloomer I 1986 Phys. Rev. B 34 7018

    [15]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [16]

    Xing H W, Peng Y Q, Yang Q S, Ma C Z, Wang R S, Li T S 2008 Acta. Phys. Sin. 57 7374 (in Chinese)[邢宏伟、彭应全、杨青森、马朝柱、汪润生、李训栓 2008 物理学报 57 7374]

    [17]

    Braun C L 1984 J. Chem. Phys. 80 4157

    [18]

    Hausermann R, Knapp E, Moos M, Reinke N A, Flatz T, Ruhstaller B 2009 J. Appl. Phys. 106 104507

  • [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864

    [2]

    Feng Z H, Hou Y B, Shi Q M, Liu X J, Teng F 2010 Chin. Phys. B 19 098601

    [3]

    Kim J Y, Lee K, Coates N E, Moses Daniel, Nguyen T Q, Dante Mark, Heeger A J 2007 Science 317 222

    [4]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297

    [5]

    Chen H Y, Hou J H, Zhang S Q, Liang Y Y , Yang G W, Yang Y, Yu L P, Wu Y, Li G 2009 Nature Photonics 3 649

    [6]

    Kumar A, Sista S, Yang Y 2009 J. Appl. Phys. 105 094512

    [7]

    Pivrikas A, Sariciftci N S, Juska G, Osterbacka R 2007 Prog. Photovolt: Res. Appl. 15 677

    [8]

    Pettersson L A A A, Roman L S, Inganas Olle 1999 J. Appl. Phys. 86 487

    [9]

    Stubinger T, Brutting W 2001 J. Appl. Phys. 90 3632

    [10]

    Zhou Y, Wu G S, Dai W, Li H B, Wang A Y 2010 Acta. Phys. Sin. 59 2356 (in Chinese)[周 毅、吴国松、代 伟、李洪波、汪爱英 2010 物理学报 59 2356]

    [11]

    Peumans P, Yakimov A, Forrest S R 2003 J. Appl. Phys. 93 3693

    [12]

    Moule A J, Meerholz K 2007 Appl. Phys. Lett. 91 061901

    [13]

    Macleod H A 2001 Thin-Film Optical Filters 3rd edn (Bristol: Institute of Physics Publishing)

    [14]

    Forouhi A R, Bloomer I 1986 Phys. Rev. B 34 7018

    [15]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [16]

    Xing H W, Peng Y Q, Yang Q S, Ma C Z, Wang R S, Li T S 2008 Acta. Phys. Sin. 57 7374 (in Chinese)[邢宏伟、彭应全、杨青森、马朝柱、汪润生、李训栓 2008 物理学报 57 7374]

    [17]

    Braun C L 1984 J. Chem. Phys. 80 4157

    [18]

    Hausermann R, Knapp E, Moos M, Reinke N A, Flatz T, Ruhstaller B 2009 J. Appl. Phys. 106 104507

  • [1] Huang Zhuo-Yin, Li Guo-Long, Li Kan, Zhen Hong-Yu, Shen Wei-Dong, Liu Xiang-Dong, Liu Xu. Determination of optical constants and thickness of photoactive layer in polymer oslar cells by single transmission measurement. Acta Physica Sinica, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [2] Li Guo-Long, Li Jin, Zhen Hong-Yu. Analysis of the light absorption enhancement in polymer solar cell with TiO2 optical spacer. Acta Physica Sinica, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [3] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [4] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [5] Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying. Influence of doped PEDOT ∶PSS on performance of polymer solar cells. Acta Physica Sinica, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [6] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [7] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [8] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [9] Gong Wei, Xu Zheng, Zhao Su-Ling, Liu Xiao-Dong, Yang Qian-Qian, Fan Xing. Effects of NPB anode buffer layer on the performances of inverted bulk heterojunction polymer solar cells. Acta Physica Sinica, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [10] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. Acta Physica Sinica, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
  • Citation:
Metrics
  • Abstract views:  3343
  • PDF Downloads:  608
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2010
  • Accepted Date:  18 October 2010
  • Published Online:  15 July 2011

Analysis of the effect of active layer thickness on polymer solar cell performance based on optical and opto-electronic model

  • 1. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China

Abstract: Polymer solar cell with excellent performance is currently composed of the blend bulk-heterojunction formed by conjugated polymer as donor material and fullerene as acceptor material, among which P3HT and PCBM are most widely used. For the photoelectric thin film device, the optical and the electric characteristics of the active layer can affect the device performance directly. The optical constants of the active layer are obtained primarily based on the Forouhi-Bloomer model. According to the Fresnel coefficient matrix, the numbers of photons absorbed by different active layer thick devices are investigated by calculating electromagnetic field distributions inside this structure. To make a specific analysis of the thickness effect on dissociation probability of bound pairs without external excitation, the model of Onsager-Braun is adopted. Theoretical analysis shows that the active layer with a thickness of 100 nm can maximize photon absorption by the device without reducing the dissociation probability of excitons obviously. As a result, an optimal thickness of the active layer is about 100 nm, which is confirmed by the theoretical and the experimental results from the device with the structure of ITO/PEDOT/ P3HT:PC60BM /LiF/Al.

Reference (18)

Catalog

    /

    返回文章
    返回