Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A radiation degradation model of metal-oxide-semiconductor field effect transistor

Sun Peng Du Lei Chen Wen-Hao He Liang Zhang Xiao-Fang

A radiation degradation model of metal-oxide-semiconductor field effect transistor

Sun Peng, Du Lei, Chen Wen-Hao, He Liang, Zhang Xiao-Fang
PDF
Get Citation
  • Based on the production kinetics of oxide-trapped charge and interface-trapped charge and the microscopic mechanism of radiation damage, a model of post-irradiation threshold voltage drift due to oxide trap and interface trap as a function of radiation dose is proposed. This model predicts that the post-irradiation threshold voltage drift due to oxide trap and interface trap would be linear in dose at low dose levels. At high dose levels, the post-irradiation threshold voltage drift due to oxide trap tend to be saturated, its peak value has no correlation with radiation dose, and the post-irradiation threshold voltage drift due to interface trap has an exponential relationship with radiation dose. In addition, the model indicates that the oxide-trapped charge and the interface-trapped charge start a saturation phenomenon at different radiation doses, and the saturation phenomenon of oxide-trapped charge appears earlier than interface-trapped charge. Finally, the experimental results accord well with the model. This model provides a more accurate prediction for radiation damage in metal-oxide-semiconductor field effect transistor.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61106062).
    [1]

    Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297

    [2]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [4]

    Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650

    [5]

    Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901

    [6]

    Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913

    [7]

    Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953

    [8]

    Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690

    [9]

    Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054

    [10]

    Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113

    [11]

    Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260

    [12]

    Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413

    [13]

    Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028

    [14]

    Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058

    [15]

    Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 物理学报 56 3400]

    [16]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158

    [17]

    Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 物理学报 58 4090]

    [18]

    Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]

    [19]

    McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133

  • [1]

    Meisenheimer T L, Fleetwood D M, Shaneyfelt M R, Riewe L C 1991 IEEE Trans. Nucl. Sci. 38 1297

    [2]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [4]

    Sergey N R, Claude R C 2002 IEEE Trans. Nucl. Sci. 49 2650

    [5]

    Harold P H, Ronald L P, Steven C W 2003 IEEE Trans. Nucl. Sci. 50 1901

    [6]

    Chen X J, Barnaby H J, Vermeire B 2007 IEEE Trans. Nucl. Sci. 54 1913

    [7]

    Fleetwood D M, Meisenheimer T L, Scofield J H 1994 IEEE Trans. Electron. 41 1953

    [8]

    Klein R B, Saks N S, Shanfield Z 1990 IEEE Trans. Nucl. Sci. 37 1690

    [9]

    Naruke K, Yoshida M, Maeguchi K, Tango H 1983 IEEE Trans. Nucl. Sci. 30 4054

    [10]

    Winokur P S, Boesch H E, McGarrity J M, McLean F B 1977 IEEE Trans. Nucl. Sci. 24 2113

    [11]

    Benedetto J X, Boesch H E, McLean F B 1988 IEEE Trans. Nucl. Sci. 35 1260

    [12]

    Lenahanl P M, Conley J F 1998 IEEE Trans. Nucl. Sci. 45 2413

    [13]

    Shaposhnikov A V, Gritsenko V A, Zhidomirov G M, Roger M 2002 Phys. Sol. State 44 1028

    [14]

    Fleetwood D M, Winokur P S, Reber R A, Meisenheimer T L,Schwank J R, Shaneyfelt M R, Riewe L C 1993 Appl. Phys. Lett. 73 5058

    [15]

    Li R M, Du L, Zhuang Y Q, Bao J L 2007 Acta Phys. Sin. 56 3400 (in Chinese) [李瑞珉, 杜磊, 庄奕琪, 包军林 2007 物理学报 56 3400]

    [16]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158

    [17]

    Chen W H, Du L, Zhuang Y Q, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090 (in Chinese) [陈伟华, 杜磊, 庒奕琪, 何亮, 张天福, 张雪 2009 物理学报 58 4090]

    [18]

    Lai Z W 1998 Anti-Radiation Electronics: Radiation Effects and Radiation-Harden Theory (Beijing: National Defence Industry Press) p74 (in Chinese) [赖祖武 1998 抗辐射电子学——辐射效应及加固原理 (北京: 国防工业出版杜) 第74页]

    [19]

    McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133

  • Citation:
Metrics
  • Abstract views:  1752
  • PDF Downloads:  571
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2011
  • Accepted Date:  28 May 2012
  • Published Online:  20 May 2012

A radiation degradation model of metal-oxide-semiconductor field effect transistor

  • 1. School of Technical Physics, Xidian University, Xi'an 710071, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61106062).

Abstract: Based on the production kinetics of oxide-trapped charge and interface-trapped charge and the microscopic mechanism of radiation damage, a model of post-irradiation threshold voltage drift due to oxide trap and interface trap as a function of radiation dose is proposed. This model predicts that the post-irradiation threshold voltage drift due to oxide trap and interface trap would be linear in dose at low dose levels. At high dose levels, the post-irradiation threshold voltage drift due to oxide trap tend to be saturated, its peak value has no correlation with radiation dose, and the post-irradiation threshold voltage drift due to interface trap has an exponential relationship with radiation dose. In addition, the model indicates that the oxide-trapped charge and the interface-trapped charge start a saturation phenomenon at different radiation doses, and the saturation phenomenon of oxide-trapped charge appears earlier than interface-trapped charge. Finally, the experimental results accord well with the model. This model provides a more accurate prediction for radiation damage in metal-oxide-semiconductor field effect transistor.

Reference (19)

Catalog

    /

    返回文章
    返回