Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature

Qin Yu-Xiang Liu Kai-Xuan Liu Chang-Yu Sun Xue-Bin

P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature

Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin
PDF
Get Citation
  • Tungsten oxide nanowire has a great potential application to gas sensor with high sensitivity and low power consumption. Its gas-sensing properties can be greatly improved after doping the nanowires. In this paper, vanadium (V)-doped W18O49 nanowires are synthesized by solvothermal method, with WCl6 serving as precursor and NH4VO3 as dopant. The microstructures of the pure and the doped nanowires are characterized by using SEM, TEM, XRD, and XPS techniques, and the NO2-sensing properties are evaluated in a static gas-sensing measurement system. The obtained results indicate that the introduction of V dopant suppresses the growth of one-dimensional nanowires along their axis direction and causes the secondary assembly of nanowires bundles. At room temperature, the V-doped W18O49 nanowires show an abnormal p-type response characteristic upon being exposed to NO2 gas, and a conductivity transition from p-to n-type occurs when operating temperature is raised to about 110 ℃. The doped nanowires-based sensor exhibits obvious sensitivity and good response stability to dilute NO2 gas of 80 ppb at room temperature. The origin for the p-n conductivity transition and the high sensitivity at room temperature for the V-doped W18O49 nanowires are analyzed, and they can be attributed to the strong surface adsorption of oxygen and NO2 molecules due to the large density of unstable surface states.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070) and the Tianjin Natural Science Foundation, China (Grant No. 11JCZDJC15300).
    [1]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 物理学报 62 057102]

    [2]

    Hieu N V, Vuong H V, Duy N V, Hoa N D 2012 Sens. Actuators B 171-172 760

    [3]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Qin Y X, Shen W J, Li X, Hu M 2011 Sens. Actuators B 155 646

    [6]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [7]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [8]

    Vaishampayan M V, Deshmukh R G, Walke P, Mulla I S 2008 Mater. Chem. Phys. 109 230

    [9]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuators B 135 524

    [10]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuators B 150 339

    [11]

    Sun S B, Zou Z D, Min G H 2009 Mater. Charact. 60 437

    [12]

    Li Y H, Zhao Y M, Ma R Z, Zhu Y Q, Fisher N, Jin Y Z, Zhang X P 2006 J. Phys. Chem. B 110 18191

    [13]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2011 Chin. Phys. B 20 048102

    [14]

    P Siciliano 2000 Sens. Actuators B 70 153

    [15]

    Fardindoost S, Zad A I, Rahimi F, Ghasempour R 2010 Int. J. Hydrogen Energy 35 854

    [16]

    Cabot A, Diéguez A, Romano-Rodriguez A, Morante J R, Bârsan N 2001 Sens. Actuators B 79 98

    [17]

    Silversmit G, Depla D, Poelman Hilde, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [18]

    Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G 2003 Sens. Actuators B 93 562

    [19]

    Zhang C, Debliquy M, Boudiba A, Liao H L, Coddet C 2010 Sens. Actuators B 144 280

    [20]

    Williams D E 1999 Sens. Actuators B 57 1

    [21]

    Liu Y L, Yang H F, Yang Y, Liu Z M, Shen G L, Yu R Q 2006 Thin Solid Films 497 355

    [22]

    Li M Y, Yu M L, Su Q, Liu X Q, Xie E Q, Zhang X Q 2012 Acta Phys. Sin. 61 236101 (in Chinese) [李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩 2012 物理学报 61 236101]

    [23]

    Safonova O V, Delabouglise G, Chenevier B, Gaskov A M, Labeau M 2002 Mater. Sci. Eng. C 21 105

    [24]

    Sayago I, Gutiérrez J, Arés L, Robla J I, Horrillo M C, Getino J, Agapito J A 1995 Sens. Actuators B 25 512

    [25]

    Lee Y C, Chueh Y L, Hsieh C H, Chang M T, Chou L J, Wang Z L, Lan Y W, Chen C D, Kurata H, Isoda S 2007 Small 3 1356

    [26]

    Viswanathan K, Brandt K, Salje E 1981 J. Solid State Chem. 36 45

    [27]

    Licznerski B W, Nitsh K, Teterycz H, Wisniewski K 2001 Sens. Actuators B 79 157

    [28]

    Shieh J, Feng H M, Hon M H, Juang H Y 2002 Sens. Actuators B 86 75

    [29]

    Xu C N, Tamaki J, Miura N, Yamazoe N 1991 Sens. Actuators B 3 147

  • [1]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 物理学报 62 057102]

    [2]

    Hieu N V, Vuong H V, Duy N V, Hoa N D 2012 Sens. Actuators B 171-172 760

    [3]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [4]

    Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C, Huang W 2011 Chin. Phys. Lett. 28 080702

    [5]

    Qin Y X, Shen W J, Li X, Hu M 2011 Sens. Actuators B 155 646

    [6]

    Kim Y S, Ha S C, Kim K, Yang H, Choi S Y, Kim Y T Park J T, Lee C H, Choi J, Paek J, Lee K 2005 Appl. Phys. Lett. 86 213105

    [7]

    Zhao Y M, Zhu Y Q 2009 Sens. Actuators B 137 27

    [8]

    Vaishampayan M V, Deshmukh R G, Walke P, Mulla I S 2008 Mater. Chem. Phys. 109 230

    [9]

    Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M 2009 Sens. Actuators B 135 524

    [10]

    Qin Y X, Hu M, Zhang J 2010 Sens. Actuators B 150 339

    [11]

    Sun S B, Zou Z D, Min G H 2009 Mater. Charact. 60 437

    [12]

    Li Y H, Zhao Y M, Ma R Z, Zhu Y Q, Fisher N, Jin Y Z, Zhang X P 2006 J. Phys. Chem. B 110 18191

    [13]

    Yan J F, You T G, Zhang Z Y, Tian J X, Yun J N, Zhao W 2011 Chin. Phys. B 20 048102

    [14]

    P Siciliano 2000 Sens. Actuators B 70 153

    [15]

    Fardindoost S, Zad A I, Rahimi F, Ghasempour R 2010 Int. J. Hydrogen Energy 35 854

    [16]

    Cabot A, Diéguez A, Romano-Rodriguez A, Morante J R, Bârsan N 2001 Sens. Actuators B 79 98

    [17]

    Silversmit G, Depla D, Poelman Hilde, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [18]

    Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G 2003 Sens. Actuators B 93 562

    [19]

    Zhang C, Debliquy M, Boudiba A, Liao H L, Coddet C 2010 Sens. Actuators B 144 280

    [20]

    Williams D E 1999 Sens. Actuators B 57 1

    [21]

    Liu Y L, Yang H F, Yang Y, Liu Z M, Shen G L, Yu R Q 2006 Thin Solid Films 497 355

    [22]

    Li M Y, Yu M L, Su Q, Liu X Q, Xie E Q, Zhang X Q 2012 Acta Phys. Sin. 61 236101 (in Chinese) [李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩 2012 物理学报 61 236101]

    [23]

    Safonova O V, Delabouglise G, Chenevier B, Gaskov A M, Labeau M 2002 Mater. Sci. Eng. C 21 105

    [24]

    Sayago I, Gutiérrez J, Arés L, Robla J I, Horrillo M C, Getino J, Agapito J A 1995 Sens. Actuators B 25 512

    [25]

    Lee Y C, Chueh Y L, Hsieh C H, Chang M T, Chou L J, Wang Z L, Lan Y W, Chen C D, Kurata H, Isoda S 2007 Small 3 1356

    [26]

    Viswanathan K, Brandt K, Salje E 1981 J. Solid State Chem. 36 45

    [27]

    Licznerski B W, Nitsh K, Teterycz H, Wisniewski K 2001 Sens. Actuators B 79 157

    [28]

    Shieh J, Feng H M, Hon M H, Juang H Y 2002 Sens. Actuators B 86 75

    [29]

    Xu C N, Tamaki J, Miura N, Yamazoe N 1991 Sens. Actuators B 3 147

  • [1] Zhao Bo-Shuo, Qiang Xiao-Yong, Qin Yue, Hu Ming. Tungsten oxide nanowire gas sensor preparation and P-type NO2 sensing properties at room temperature. Acta Physica Sinica, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [2] Qin Yu-Xiang, Wang Fei, Shen Wan-Jiang, Hu Ming. Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites. Acta Physica Sinica, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [3] Fang Cheng, Wang Hong, Shi Si-Qi. Research progress of electrochromic performances of WO3. Acta Physica Sinica, 2016, 65(16): 168201. doi: 10.7498/aps.65.168201
    [4] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [5] Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao. Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation. Acta Physica Sinica, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [6] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [7] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [8] Zhang Xiao-Xing, Meng Fan-Sheng, Tang Ju, Yang Bing. DFT calculations on the adsorption of component SF6 decomposed under partial discharge onto carbon nanotubes modified by -OH. Acta Physica Sinica, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [9] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [10] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
  • Citation:
Metrics
  • Abstract views:  536
  • PDF Downloads:  442
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2013
  • Accepted Date:  03 July 2013
  • Published Online:  20 October 2013

P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature

  • 1. School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070) and the Tianjin Natural Science Foundation, China (Grant No. 11JCZDJC15300).

Abstract: Tungsten oxide nanowire has a great potential application to gas sensor with high sensitivity and low power consumption. Its gas-sensing properties can be greatly improved after doping the nanowires. In this paper, vanadium (V)-doped W18O49 nanowires are synthesized by solvothermal method, with WCl6 serving as precursor and NH4VO3 as dopant. The microstructures of the pure and the doped nanowires are characterized by using SEM, TEM, XRD, and XPS techniques, and the NO2-sensing properties are evaluated in a static gas-sensing measurement system. The obtained results indicate that the introduction of V dopant suppresses the growth of one-dimensional nanowires along their axis direction and causes the secondary assembly of nanowires bundles. At room temperature, the V-doped W18O49 nanowires show an abnormal p-type response characteristic upon being exposed to NO2 gas, and a conductivity transition from p-to n-type occurs when operating temperature is raised to about 110 ℃. The doped nanowires-based sensor exhibits obvious sensitivity and good response stability to dilute NO2 gas of 80 ppb at room temperature. The origin for the p-n conductivity transition and the high sensitivity at room temperature for the V-doped W18O49 nanowires are analyzed, and they can be attributed to the strong surface adsorption of oxygen and NO2 molecules due to the large density of unstable surface states.

Reference (29)

Catalog

    /

    返回文章
    返回