搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理

秦玉香 王飞 沈万江 胡明

引用本文:
Citation:

氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理

秦玉香, 王飞, 沈万江, 胡明

Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites

Qin Yu-Xiang, Wang Fei, Shen Wan-Jiang, Hu Ming
PDF
导出引用
  • 利用溶剂热法合成了一维的氧化钨纳米线, 通过掺入适量单壁碳纳米管(SWNT)制备了基于氧化钨纳米线-SWNT 复合结构的室温气敏元件并评价了其对NO2气体的室温敏感性能. 利用X射线与扫描电子显微镜表征了材料的微结构, 结果表明, 合成的氧化钨纳米线具有单斜的W18O49结构, 复合材料中SWNT被包埋在氧化钨纳米线中间. 气敏性能测试结果表明, 氧化钨纳米线-SWNT复合结构气敏元件在室温下对NO2气体表现出了高的灵敏度和超快的响应特性; 较低的SWNT掺入量对获得好的气敏性能有利. 分析了基于复合结构材料气敏元件的可能的气敏机理, 认为元件良好的室温敏感性能与SWNT掺入在复合结构材料中引入大量的贯穿气孔和p-n异质结有关.
    One-dimensional tungsten oxide nanowires are synthesized by the solvothermal method. The sensors based on tungsten oxide nanowires/single-wall carbon nanotubes (SWNTs) composites are fabricated by introducing SWNT, and their NO2 sensing properties are evaluated at room temperature. X-ray diffraction and field emission scanning electron microscope characterizations indicate that the as-synthesized nanowires are monoclinic W18O49, and SWNTs are embedded within the nanowire matrix in the prepared tungsten oxide nanowires/SWNT composites. The tungsten oxide nanowires/SWNT composites-based sensors show high sensitivity, good selectivity and super fast response to NO2 gas at room temperature. The NO2 sensing properties of the sensors increase with the decrease of SWNT content. The sensing mechanism of the composites-based sensor is discussed and it is thought that the introduction of SWNT induces the formation of a large number of p-n hetero junctions and cross-linked diffusion channels in the structure of the composites, which are responsible for the good NO2 sensing properties at room temperature.
    • 基金项目: 国家自然科学基金 (批准号: 60801018)、天津市自然科学基金(批准号: 09JCYBJC01100)和 教育部博士点新教师基金(批准号: 200800561109)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60801018), Tianjin Natural Science Foundation of China (Grant No. 09JCYBJC01100), and the New Teacher Foundation of Ministry of Education of China (Grant No. 200800561109).
    [1]

    Chaudhari G N, Bende A M, Bodade A B, Patil S S, Sapkal V S2006 Sens. Actuators B 115 297

    [2]

    Liu R L, Xiang Q, Pan Q Y, Cheng Z X, Shi L Y 2006 J. Inorg.Mater. 21 793 (in Chinese) [刘荣利, 向群, 潘庆谊, 程知萱, 施利毅 2006 无机材料学报 21 793]

    [3]

    Timmer B, Olthuis W, Berg A 2005 Sens. Actuators B 107 666

    [4]

    Korotcenkov G, Blinov I, Ivanov M, Stetter J R 2007 Sens. ActuatorsB 120 679

    [5]

    Akiyama M, Tamaki J, Miura N, Yamanoe N 1991 Chem. Lett. 201611

    [6]

    Akiyama M, Zhang Z, Tamaki J, Miura N, Yamanoe N 1993 Sens.Actuators B 14 619

    [7]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S,Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [8]

    Rout C S, Hegde M, Rao C N R 2008 Sens. Actuators B 128 488

    [9]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery CB, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B136 257

    [10]

    Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, WangY, Wu S 2008 Sens. Actuators B 134 133

    [11]

    Imawan C, Solzbacher F, Steffes H, Obermeier E 2000 Sens.Actuators B 64 193

    [12]

    Qi P F, Vermesh O, Grecu M, Javey A, Wang O, Dai H J, Peng S,Cho K J 2003 Nano Lett. 3 347

    [13]

    Liang J W, Hu H F, Wei J W, Peng P 2005 Acta Phys. Sin. 542877 (in Chinese) [梁君武, 胡慧芳, 韦建卫, 彭平 2006 物理学报 54 2877]

    [14]

    Qin Y, Hu M, Zhang J 2010 Sens. Actuators B 150 339

    [15]

    Bittencourt C, Felten A, Espinosa E H, Ionescu R, Llobet E, CorreigX, Pireaux J J 2006 Sens. Actuators B 115 33

    [16]

    Liu Z, Yamazaki T, Shen Y, Kikuta T, Nakatani N 2007 Sens.Actuators B 128 173

    [17]

    Duy N V, Hieu N V, Huy P T, Chien N D, Thamilselvan M, Yi J2008 Physica E 41 258

    [18]

    Zhou X H, Cao Q X, Huang H, Yang P, Hu Y 2003 Mater. Sci.Eng. B 99 44

    [19]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36

    [20]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374

    [21]

    Liu Y L, Yang H F, Yang Y, Liu Z M, Shen G L, Yu R Q 2006Thin Solid Films 497 355

    [22]

    Safonova O V, Delabouglise G, Chenevier B, Gaskov A M,Labeau M 2002 Mater. Sci. Eng. C 21 105

    [23]

    Sayago I, Gutiérrez J, Arés L, Robla J I, Horrillo M C, Getino J,Agapito J A 1995 Sens. Actuators B 25 512

  • [1]

    Chaudhari G N, Bende A M, Bodade A B, Patil S S, Sapkal V S2006 Sens. Actuators B 115 297

    [2]

    Liu R L, Xiang Q, Pan Q Y, Cheng Z X, Shi L Y 2006 J. Inorg.Mater. 21 793 (in Chinese) [刘荣利, 向群, 潘庆谊, 程知萱, 施利毅 2006 无机材料学报 21 793]

    [3]

    Timmer B, Olthuis W, Berg A 2005 Sens. Actuators B 107 666

    [4]

    Korotcenkov G, Blinov I, Ivanov M, Stetter J R 2007 Sens. ActuatorsB 120 679

    [5]

    Akiyama M, Tamaki J, Miura N, Yamanoe N 1991 Chem. Lett. 201611

    [6]

    Akiyama M, Zhang Z, Tamaki J, Miura N, Yamanoe N 1993 Sens.Actuators B 14 619

    [7]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S,Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [8]

    Rout C S, Hegde M, Rao C N R 2008 Sens. Actuators B 128 488

    [9]

    Gerlitz R A, Benkstein K D, Lahr D L, Hertz J L, Montgomery CB, Bonevich J E, Semancik S, Tarlov M J 2009 Sens. Actuators B136 257

    [10]

    Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, WangY, Wu S 2008 Sens. Actuators B 134 133

    [11]

    Imawan C, Solzbacher F, Steffes H, Obermeier E 2000 Sens.Actuators B 64 193

    [12]

    Qi P F, Vermesh O, Grecu M, Javey A, Wang O, Dai H J, Peng S,Cho K J 2003 Nano Lett. 3 347

    [13]

    Liang J W, Hu H F, Wei J W, Peng P 2005 Acta Phys. Sin. 542877 (in Chinese) [梁君武, 胡慧芳, 韦建卫, 彭平 2006 物理学报 54 2877]

    [14]

    Qin Y, Hu M, Zhang J 2010 Sens. Actuators B 150 339

    [15]

    Bittencourt C, Felten A, Espinosa E H, Ionescu R, Llobet E, CorreigX, Pireaux J J 2006 Sens. Actuators B 115 33

    [16]

    Liu Z, Yamazaki T, Shen Y, Kikuta T, Nakatani N 2007 Sens.Actuators B 128 173

    [17]

    Duy N V, Hieu N V, Huy P T, Chien N D, Thamilselvan M, Yi J2008 Physica E 41 258

    [18]

    Zhou X H, Cao Q X, Huang H, Yang P, Hu Y 2003 Mater. Sci.Eng. B 99 44

    [19]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36

    [20]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374

    [21]

    Liu Y L, Yang H F, Yang Y, Liu Z M, Shen G L, Yu R Q 2006Thin Solid Films 497 355

    [22]

    Safonova O V, Delabouglise G, Chenevier B, Gaskov A M,Labeau M 2002 Mater. Sci. Eng. C 21 105

    [23]

    Sayago I, Gutiérrez J, Arés L, Robla J I, Horrillo M C, Getino J,Agapito J A 1995 Sens. Actuators B 25 512

  • [1] 毕文杰, 杨爽, 周静, 金伟, 陈文. Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究. 物理学报, 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [2] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [3] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [5] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [6] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [7] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [8] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [9] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [10] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [11] 张晓星, 孟凡生, 唐炬, 杨冰. 羟基碳纳米管吸附SF6放电分解组分的DFT计算. 物理学报, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [12] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [13] 王益军, 王六定, 杨敏, 刘光清, 严诚. 分层掺B和吸附H2O碳纳米管的结构稳定性及电子场发射性能. 物理学报, 2010, 59(7): 4950-4954. doi: 10.7498/aps.59.4950
    [14] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [15] 华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层的吸波性能研究. 物理学报, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [18] 廖庆亮, 张 跃, 夏连胜, 黄运华, 齐俊杰, 高战军, 张 篁. 碳纳米管阴极的强流脉冲发射性能研究. 物理学报, 2007, 56(9): 5335-5340. doi: 10.7498/aps.56.5335
    [19] 封 伟, 易文辉, 冯奕钰, 吴子刚, 张振中. 聚苯胺/碳纳米管复合体的制备及其三阶非线性光学性能研究. 物理学报, 2006, 55(7): 3772-3777. doi: 10.7498/aps.55.3772
    [20] 孙劲鹏, 王太宏. 一种基于碳纳米管的随机存储器. 物理学报, 2002, 51(9): 2096-2100. doi: 10.7498/aps.51.2096
计量
  • 文章访问数:  6219
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-11
  • 修回日期:  2011-07-07
  • 刊出日期:  2012-03-05

/

返回文章
返回