Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic structure and optical properties of TiO2 nanotubes

Xie Zhi Cheng Wen-Dan

First-principles study of electronic structure and optical properties of TiO2 nanotubes

Xie Zhi, Cheng Wen-Dan
PDF
Get Citation
  • Using first-principles calculations based on the density functional theory, we systematically study the geometry structure, electronic structure and optical properties of the small size (n, 0)-type TiO2 nanotubes (D2 unit decreases with the diameter increasing, and the nanotubes become more stable. At a diameter of about 14 Å, a configuration change occurs. Band structure analysis shows that electronic states of TiO2 nanotubes are localized, and the conductivity is better for nanotubes with small diameters (D2 nanotubes shift from direct band gap to indirect band gap. And the band gap increases with diameter increasing, because π orbital overlap effect is greater than the quantum confinement effect. Owing to the competition between the two effects, the peaks of the dielectric function ε2(ω) will become redshifted or blueshifted. When its diameter is larger than 9 Å ((8, 0) tube), the optical absorption of TiO2 nanotubes will be significantly enhanced.
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2011J05121) and the Foundation for Young Teachers of Fujian Agriculture and Forestry University, China (Grant No. 2010025).
    [1]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891

    [2]

    Ghicov A, Schmuki P 2009 Chem. Commun. 20 2791

    [3]

    Devan R S, Patil R A, Lin J H, Ma Y R 2012 Adv. Funct. Mater. 22 3326

    [4]

    Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y 2008 Adv. Mater. 20 1044

    [5]

    Wang D A, Liu Y, Wang C W, Zhou F, Liu W M 2009 ACS Nano 3 1249

    [6]

    Shao Z F, Yang Y Q, Liu S T, Wang Q 2014 Chin. Phys. B 23 096105

    [7]

    Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A 2008 Nano Lett. 8 1654

    [8]

    Varghese O K, Paulose M, LaTempa T J, Grimes C A 2009 Nano Lett. 9 731

    [9]

    Lin F, Li Z Y, Wang S Y 2009 Acta Phys. Sin. 58 8544 (in Chinese) [林峰, 李缵轶, 王山鹰 2009 物理学报 58 8544]

    [10]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 物理学报 57 5806]

    [11]

    Wang Y Q, Hu G Q, Duan X F, Sun H L, Xue Q K 2002 Chem. Phys. Lett. 365 427

    [12]

    Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M 2005 Surf. Interface Anal. 37 265

    [13]

    Zhang S, Peng L M, Chen Q, Du G H, Dawson G, Zhou W Z 2003 Phys. Rev. Lett. 91 256103

    [14]

    Afshar S, Hakamizadeh M 2009 J. Exp. Nanosci. 4 77

    [15]

    Armstrong G, Armstrong A R, Canales J, Bruce P G 2005 Chem. Commun. 19 2454

    [16]

    IvanovskayaV V, Enyashin A N, Ivanovskii A L 2003 Mendeleev Commun. 13 5

    [17]

    Enyashin A N, Seifert G 2005 Phys. Status Solidi B 242 1361

    [18]

    Wang J G, Wang J, Ma L, Zhao J J, Wang B L, Wang G H 2009 Physica E 41 838

    [19]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [20]

    Bandura A V, Evarestov R A 2009 Surf. Sci. 603 L117

    [21]

    Evarestov R A, Bandura A V, Losev M V, Piskunov S, Zhukovskii Y F 2010 Physica E 43 266

    [22]

    Hossain F M, Evteev A V, Belova I V, Nowotny J, Murch G E 2010 Comput. Mater. Sci. 48 854

    [23]

    Ferrari A M, Szieberth D, Noel Y 2011 J. Mater. Chem. 21 4568

    [24]

    Liu H, Lin M H, Tan K 2012 Acta Phys. Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [25]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [26]

    Meng Q Q, Guan Z Y, Huang J, Li Q X, Yang J L 2014 Phys. Chem. Chem. Phys. 16 11519

    [27]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [31]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [32]

    Lin J S, Qteish A, Payne M C, Heine V 1993 Phys. Rev. B 47 4174

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Jones R O, Gunnarsson O 1989 Rev. Mod. Phys. 61 689

    [35]

    Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159

    [36]

    Wang C S, Klein B M 1981 Phys. Rev. B 24 3417

    [37]

    Liu H 2010 Chin. Phys. B 19 057206

    [38]

    Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A, Walsh F C 2005 J. Phys. Chem. B 109 8565

    [39]

    Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 物理学报 56 5371]

    [40]

    Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H, Cheng W D 2007 Opt. Express 15 10947

    [41]

    Margulis V A, Gaiduk E A, Muryumin E E, Boyarkina O V, Fomina L V 2006 Phys. Rev. B 74 245419

    [42]

    Liang W Z, Wang X J, Yokojima S, Chen G 2000 J. Am. Chem. Soc. 122 11129

    [43]

    Pan H, Feng Y P, Lin J Y 2006 Phys. Rev. B 73 035420

  • [1]

    Chen X, Mao S S 2007 Chem. Rev. 107 2891

    [2]

    Ghicov A, Schmuki P 2009 Chem. Commun. 20 2791

    [3]

    Devan R S, Patil R A, Lin J H, Ma Y R 2012 Adv. Funct. Mater. 22 3326

    [4]

    Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y 2008 Adv. Mater. 20 1044

    [5]

    Wang D A, Liu Y, Wang C W, Zhou F, Liu W M 2009 ACS Nano 3 1249

    [6]

    Shao Z F, Yang Y Q, Liu S T, Wang Q 2014 Chin. Phys. B 23 096105

    [7]

    Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A 2008 Nano Lett. 8 1654

    [8]

    Varghese O K, Paulose M, LaTempa T J, Grimes C A 2009 Nano Lett. 9 731

    [9]

    Lin F, Li Z Y, Wang S Y 2009 Acta Phys. Sin. 58 8544 (in Chinese) [林峰, 李缵轶, 王山鹰 2009 物理学报 58 8544]

    [10]

    Zhang Y, Zhao Y, Cai N, Xiong S Z 2008 Acta Phys. Sin. 57 5806 (in Chinese) [张苑, 赵颖, 蔡宁, 熊绍珍 2008 物理学报 57 5806]

    [11]

    Wang Y Q, Hu G Q, Duan X F, Sun H L, Xue Q K 2002 Chem. Phys. Lett. 365 427

    [12]

    Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M 2005 Surf. Interface Anal. 37 265

    [13]

    Zhang S, Peng L M, Chen Q, Du G H, Dawson G, Zhou W Z 2003 Phys. Rev. Lett. 91 256103

    [14]

    Afshar S, Hakamizadeh M 2009 J. Exp. Nanosci. 4 77

    [15]

    Armstrong G, Armstrong A R, Canales J, Bruce P G 2005 Chem. Commun. 19 2454

    [16]

    IvanovskayaV V, Enyashin A N, Ivanovskii A L 2003 Mendeleev Commun. 13 5

    [17]

    Enyashin A N, Seifert G 2005 Phys. Status Solidi B 242 1361

    [18]

    Wang J G, Wang J, Ma L, Zhao J J, Wang B L, Wang G H 2009 Physica E 41 838

    [19]

    Liu Z J, Zhang Q, Qin L C 2007 Solid State Commun. 141 168

    [20]

    Bandura A V, Evarestov R A 2009 Surf. Sci. 603 L117

    [21]

    Evarestov R A, Bandura A V, Losev M V, Piskunov S, Zhukovskii Y F 2010 Physica E 43 266

    [22]

    Hossain F M, Evteev A V, Belova I V, Nowotny J, Murch G E 2010 Comput. Mater. Sci. 48 854

    [23]

    Ferrari A M, Szieberth D, Noel Y 2011 J. Mater. Chem. 21 4568

    [24]

    Liu H, Lin M H, Tan K 2012 Acta Phys. Chim. Sin. 28 1843 (in Chinese) [刘昊, 林梦海, 谭凯 2012 物理化学学报 28 1843]

    [25]

    Zhang H Y, Dong S L 2013 Chin. Phys. Lett. 30 043102

    [26]

    Meng Q Q, Guan Z Y, Huang J, Li Q X, Yang J L 2014 Phys. Chem. Chem. Phys. 16 11519

    [27]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [31]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [32]

    Lin J S, Qteish A, Payne M C, Heine V 1993 Phys. Rev. B 47 4174

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Jones R O, Gunnarsson O 1989 Rev. Mod. Phys. 61 689

    [35]

    Godby R W, Schluter M, Sham L J 1988 Phys. Rev. B 37 10159

    [36]

    Wang C S, Klein B M 1981 Phys. Rev. B 24 3417

    [37]

    Liu H 2010 Chin. Phys. B 19 057206

    [38]

    Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A, Walsh F C 2005 J. Phys. Chem. B 109 8565

    [39]

    Zhang J K, Deng S H, Jin H, Liu Y L 2007 Acta Phys. Sin. 56 5371 (in Chinese) [张金奎, 邓胜华, 金慧, 刘悦林 2007 物理学报 56 5371]

    [40]

    Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H, Cheng W D 2007 Opt. Express 15 10947

    [41]

    Margulis V A, Gaiduk E A, Muryumin E E, Boyarkina O V, Fomina L V 2006 Phys. Rev. B 74 245419

    [42]

    Liang W Z, Wang X J, Yokojima S, Chen G 2000 J. Am. Chem. Soc. 122 11129

    [43]

    Pan H, Feng Y P, Lin J Y 2006 Phys. Rev. B 73 035420

  • [1] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [2] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [3] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [4] Yu Zhi-Qiang, Zhang Chang-Hua, Lang Jian-Xun. The electronic structure and optical properties of P-doped silicon nanotubes. Acta Physica Sinica, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [5] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [6] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [7] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [10] Lin Feng, Li Zuan-Yi, Wang Shan-Ying. Mechanical and electronic properties of TiO2 nanotubes. Acta Physica Sinica, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [11] Duan Man-Yi, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun, Xu Ming. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [12] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [13] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [17] Hou Qin-Ying, Kong Xiang-Lan, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [18] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [19] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] Chen Hai-Chuan, Yang Li-Jun. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
  • Citation:
Metrics
  • Abstract views:  369
  • PDF Downloads:  538
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2014
  • Accepted Date:  19 August 2014
  • Published Online:  20 December 2014

First-principles study of electronic structure and optical properties of TiO2 nanotubes

  • 1. College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
  • 2. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Fund Project:  Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2011J05121) and the Foundation for Young Teachers of Fujian Agriculture and Forestry University, China (Grant No. 2010025).

Abstract: Using first-principles calculations based on the density functional theory, we systematically study the geometry structure, electronic structure and optical properties of the small size (n, 0)-type TiO2 nanotubes (D2 unit decreases with the diameter increasing, and the nanotubes become more stable. At a diameter of about 14 Å, a configuration change occurs. Band structure analysis shows that electronic states of TiO2 nanotubes are localized, and the conductivity is better for nanotubes with small diameters (D2 nanotubes shift from direct band gap to indirect band gap. And the band gap increases with diameter increasing, because π orbital overlap effect is greater than the quantum confinement effect. Owing to the competition between the two effects, the peaks of the dielectric function ε2(ω) will become redshifted or blueshifted. When its diameter is larger than 9 Å ((8, 0) tube), the optical absorption of TiO2 nanotubes will be significantly enhanced.

Reference (43)

Catalog

    /

    返回文章
    返回