Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of proton and neutron irradiation on dark signal of CCD

Zeng Jun-Zhe Li Yu-Dong Wen Lin He Cheng-Fa Guo Qi Wang Bo Maria Wei Yin Wang Hai-Jiao Wu Da-You Wang Fan Zhou Hang

Effects of proton and neutron irradiation on dark signal of CCD

Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The proton and neutron irradiation and annealing experiments are carried out on a domestic buried channel CCD (charge-coupled devices), Monte Carlo method being applied to calculate the energy deposition of scientific CCD irradiated by proton and neutron, and the radiation damage mechanism of the device is analyzed. The displacement damage dose in N+ buried channel is simulated. During irradiation and annealing experiments, the main parameter (dark signal) is investigated. Results show that the dark signal of the buried channel CCD irradiated by 10 MeV proton and 1 MeV neutron rises obviously. With the same fluence, the increase of dark signal and the displacement damage dose in N+ buried channel caused by 10 MeV proton is larger than that by 1 MeV neutron. Dark signal caused by proton irradiation is divided into surface dark signal and bulk dark signal. Oxide-trapped-charges and interface states may be caused by ionization-generated surface dark signal, and the bulk defects may be caused by displacement-generated bulk dark signal. Neutron irradiation only affects the bulk dark signal. Defects and their annealing temperature are studied. The dark signal of CCD irradiated by proton is greatly reduced after annealing, this phenomenon means that the dark signal is mainly affected by ionization. The proportion of bulk dark signals in total dark signals can be calculated by the remainder of dark signal after annealing, and it is at most about 20% or less. From the formula, the position of energy level of bulk defects has an obvious influence on the bulk dark signal. The energy level in the middle of the forbidden band can provide effective hot carriers. Combining the results of experiment and simulation, when the displacement damage doses in N+ buried channel are the same, the bulk dark signal produced by proton is nearly the same as that produced by neutron. This phenomenon means that the defect levels in the forbidden band gap caused by proton and neutron irradiation have the same contributions to dark signal generation. Effect of proton and neutron irradiation on the bulk dark signal is homogeneous. The displacement damage dose can be used to characterize the degradation degree of the bulk dark signal in CCD after irradiation.
      Corresponding author: Wen Lin, wenlin@ms.xjb.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11005152).
    [1]

    Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221

    [2]

    Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579

    [3]

    Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671

    [4]

    Hopkinson G R 1994 Radiation Physics and Chemistry 43 79

    [5]

    Jaanimagi P A, Boni R, Keck R L 2001 Review of Scientific Instruments 72 800

    [6]

    Stefanov K D, Tsukamoto T, Miyamoto A, Sugimoto Y, Tamura N, Abe K, Nagaminc T, Aso T 2000 IEEE Trans. on Nucl. Sci. 47 1280

    [7]

    Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 135

    [8]

    Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Ma L Y 2015 Acta Phys. Sin. 64 024220(in Chinese) [文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 物理学报 64 024220]

    [9]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136(in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 物理学报 59 4136]

    [10]

    Xiao Z G, Tang B Q, Li J L, Zhang Y, Liu M B, Zhang Y, Wang Z J, Huang S Y 2007 Nuclear Electronics 27 724 (in Chinese) [肖志刚, 唐本奇, 李君利, 张勇, 刘敏波, 张勇, 王祖军, 黄绍艳 2007 核电子学与探测技术 27 724]

    [11]

    Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788

    [12]

    Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098

    [13]

    Timothy D. Hardy 1994 MS Dissertation(Columbia: Simon Fraser University)

    [14]

    Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989

    [15]

    Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903

    [16]

    Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160

    [17]

    Kono K, Sandland J G, Wada K, Kimerling L C 2000 X-Ray and Gamma-Ray Instrumentation for Astronomy 4140 267

    [18]

    Timothy Hardy D 1997 M. S. Dissertation(Canada: Simon Fraser University)

    [19]

    Kenneth Wang K, Aldert, Eugene Chenette R 1975 IEEE Transactions on Electron Devices 22 591

  • [1]

    Bebek C, Groom D, Holland S, Karcher A, Kolbe W, Lee J, Levi M, Palaio N, Turko B, Uslenghi M, Wagner A, Wang G 2002 IEEE Trans. on Nucl. Sci. 49 1221

    [2]

    Chugg A M, Jones R, Moutrie M J, Truscott P R 2004 IEEE Trans. on Nucl. Sci. 51 3579

    [3]

    Pickel J C, Kalma A H, Hopkinson G R, Marshall C J 2003 IEEE Trans. Nucl. Sci. 50 671

    [4]

    Hopkinson G R 1994 Radiation Physics and Chemistry 43 79

    [5]

    Jaanimagi P A, Boni R, Keck R L 2001 Review of Scientific Instruments 72 800

    [6]

    Stefanov K D, Tsukamoto T, Miyamoto A, Sugimoto Y, Tamura N, Abe K, Nagaminc T, Aso T 2000 IEEE Trans. on Nucl. Sci. 47 1280

    [7]

    Hopkinson G R, Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 135

    [8]

    Wen L, Li Y D, Guo Q, Ren D Y, Wang B, Ma L Y 2015 Acta Phys. Sin. 64 024220(in Chinese) [文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅 2015 物理学报 64 024220]

    [9]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin 59 4136(in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 物理学报 59 4136]

    [10]

    Xiao Z G, Tang B Q, Li J L, Zhang Y, Liu M B, Zhang Y, Wang Z J, Huang S Y 2007 Nuclear Electronics 27 724 (in Chinese) [肖志刚, 唐本奇, 李君利, 张勇, 刘敏波, 张勇, 王祖军, 黄绍艳 2007 核电子学与探测技术 27 724]

    [11]

    Lei F, Truscott P R, Dyer C S, Quaghebeur B, Heynderickx D, Nieminen P, Evans H, Daly E 2002 IEEE Trans. on Nucl. Sci. 49 2788

    [12]

    Benton J L, Kimerling L C 1982 Journal of the Electrochemical Society 129 2098

    [13]

    Timothy D. Hardy 1994 MS Dissertation(Columbia: Simon Fraser University)

    [14]

    Saigne F, Schrimpf R. D, Fleetwood D M, Cizmarik R, Zander D 2004 IEEE Trans, on Nucl. Sci. 44 1989

    [15]

    Schrimpf R D, Fleetwood D M, Galloway K F, Lacoe R C, Mayer D C, Puhl J M, Pease R L, Suehle J S 2004 IEEE Trans, on Nucl. Sci. 51 2903

    [16]

    Boesch H E 1988 IEEE Trans. on Nucl. Sci. 35 1160

    [17]

    Kono K, Sandland J G, Wada K, Kimerling L C 2000 X-Ray and Gamma-Ray Instrumentation for Astronomy 4140 267

    [18]

    Timothy Hardy D 1997 M. S. Dissertation(Canada: Simon Fraser University)

    [19]

    Kenneth Wang K, Aldert, Eugene Chenette R 1975 IEEE Transactions on Electron Devices 22 591

  • [1] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [2] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [3] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [4] Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2014, 63(4): 047202. doi: 10.7498/aps.63.047202
    [5] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [6] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [7] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [8] Li Yang-Xian, Liu He-Yan, Niu Peng-Juan, Liu Cai-Chi, Xu Yue-Sheng, Yang De-Ren, Que Duan-Lin. . Acta Physica Sinica, 2002, 51(10): 2407-2410. doi: 10.7498/aps.51.2407
    [9] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [10] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [11] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [12] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [13] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [14] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [15] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [16] Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong. Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite. Acta Physica Sinica, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [17] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [18] NI XIAO-WU, LU JIAN, HE AN-ZHI. STUDY OF HARD-DESTRUCTIVE MECHANISM OF THE CHARGE-COUPLED DEVICES BY A LASER. Acta Physica Sinica, 1994, 43(11): 1795-1802. doi: 10.7498/aps.43.1795
    [19] Wang Hua-Ying, Yu Meng-Jie, Jiang Ya-Nan, Song Xiu-Fa, Zhu Qiao-Fen, Liu Fei-Fei. High-resolution digital holographic microscopy realized by small size CCD camera. Acta Physica Sinica, 2013, 62(24): 244203. doi: 10.7498/aps.62.244203
    [20] ZHANG ZHENG-NAN, XU ZHEN-JIA. INFRARED ABSORPTION STUDIES ON NEUTRON IRRADIATED FZ-Si CONTAINING HYDROGEN. Acta Physica Sinica, 1982, 31(7): 994-1000. doi: 10.7498/aps.31.994
  • Citation:
Metrics
  • Abstract views:  1096
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2015
  • Accepted Date:  15 May 2015
  • Published Online:  05 October 2015

Effects of proton and neutron irradiation on dark signal of CCD

    Corresponding author: Wen Lin, wenlin@ms.xjb.ac.cn
  • 1. Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11005152).

Abstract: The proton and neutron irradiation and annealing experiments are carried out on a domestic buried channel CCD (charge-coupled devices), Monte Carlo method being applied to calculate the energy deposition of scientific CCD irradiated by proton and neutron, and the radiation damage mechanism of the device is analyzed. The displacement damage dose in N+ buried channel is simulated. During irradiation and annealing experiments, the main parameter (dark signal) is investigated. Results show that the dark signal of the buried channel CCD irradiated by 10 MeV proton and 1 MeV neutron rises obviously. With the same fluence, the increase of dark signal and the displacement damage dose in N+ buried channel caused by 10 MeV proton is larger than that by 1 MeV neutron. Dark signal caused by proton irradiation is divided into surface dark signal and bulk dark signal. Oxide-trapped-charges and interface states may be caused by ionization-generated surface dark signal, and the bulk defects may be caused by displacement-generated bulk dark signal. Neutron irradiation only affects the bulk dark signal. Defects and their annealing temperature are studied. The dark signal of CCD irradiated by proton is greatly reduced after annealing, this phenomenon means that the dark signal is mainly affected by ionization. The proportion of bulk dark signals in total dark signals can be calculated by the remainder of dark signal after annealing, and it is at most about 20% or less. From the formula, the position of energy level of bulk defects has an obvious influence on the bulk dark signal. The energy level in the middle of the forbidden band can provide effective hot carriers. Combining the results of experiment and simulation, when the displacement damage doses in N+ buried channel are the same, the bulk dark signal produced by proton is nearly the same as that produced by neutron. This phenomenon means that the defect levels in the forbidden band gap caused by proton and neutron irradiation have the same contributions to dark signal generation. Effect of proton and neutron irradiation on the bulk dark signal is homogeneous. The displacement damage dose can be used to characterize the degradation degree of the bulk dark signal in CCD after irradiation.

Reference (19)

Catalog

    /

    返回文章
    返回