Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon

Chen Jian-Hui Yang Jing Shen Yan-Jiao Li Feng Chen Jing-Wei Liu Hai-Xu Xu Ying Mai Yao-Hua

Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon

Chen Jian-Hui, Yang Jing, Shen Yan-Jiao, Li Feng, Chen Jing-Wei, Liu Hai-Xu, Xu Ying, Mai Yao-Hua
PDF
Get Citation
  • The excellent surface passivation scheme for suppression of surface recombination is a basic prerequisite to obtain high efficiency solar cells. Particularly, the HIT (heterojunction with intrinsic thin-layer) solar cell, which possesses an abrupt discontinuity of the crystal network at an interface between the crystalline silicon (c-Si) surface and the hydrogenated amorphous silicon (a-Si:H) thin film, usually causes a large density of defects in the bandgap due to a high density of dangling bonds, so it is very important for high energy conversion efficiency to obtain millisecond (ms) range of minority carrier lifetime (i. e. 2 ms). The a-Si:H, due to its excellent passivation properties obtained at low deposition temperatures and also mature processing, is still the best candidate materials for silicon HIT solar cell. Deposition of a transparent conductive oxide (TCO), such as indium tin oxide (ITO), has to be used to improve the carrier transport, since the lateral conductivity of a-Si:H is very poor. Usually, ITO is deposited by magnetron sputtering, but damage of a-Si:H layers by sputtering-induced ion bombardment inevitably occurs, thus triggering the serious degradation of the minority carrier lifetime, i. e., a loss in wafer passivation. Fortunately, this damage can be often recovered by some post-annealing. In this paper, however, the situation is different, and it is found that the minority carrier lifetime of ITO/a-Si:H/c-Si/a-Si:H heterojunction has been drastically enhanced by post-annealing after sputtering ITO on a- Si:H/c-Si/a-Si:H heterojunction (from 1.7 ms to 4.0 ms), not just recovering. It is very important to investigate how post-annealing enhances the lifetime and its physics nature. Combining the two experimental ways of HF treatment and vacuum annealing, three possible reasons for this enhancement effect (the field effect at the ITO/a-Si:H interface, the surface reaction-layer resulting from annealing in air, and the optimization of a-Si:H material itself) have been studied, suggesting this is irrelevant to the first two. The influence of post-annealing on a-Si:H/c-Si/a-Si:H heterojunction deposited at different temperatures has also been investigated. It is found that the remarkable enhancement effect of post-annealing is for low growth temperature(175 ℃) and not for high growth temperature(200 ℃), with the confirmation of an effective way for high quality passivation using growth at low temperature and then annealed at high temperature. Moreover, the configuration of a-Si:H at different growth temperatures between afore and after annealing has been discussed by an application of Fourier transform infrared (FTIR) spectroscopy. It is shown that the large increase of the lifetime of the heterojunction after annealing results from the improvement of microstructure of a-Si:H itself, which is essentially a competitive balance of the dominant role of some micro-factors, including hydrogen content, hydrogen bonding and network disorder in amorphous silicon film determined by the optimized matching between the growth temperature of a-Si:H materials and the annealing temperature of the heterojunction. An optimum control for this balance point is the essential cause of lifetime enhancement.
      Corresponding author: Xu Ying, yaohuamai@163.com;xuying@hbu.edu.cn ; Mai Yao-Hua, yaohuamai@163.com;xuying@hbu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2015201203, E2014201063).
    [1]

    Martn I, Vetter M, Orpella A, Puigdollers J, Cuevas A, Alcubilla R 2001 App. Phy. Lett. 79 2199

    [2]

    Garn M, Rau U, Brendle W, Martn I, Alcubilla R 2005 J. Appl. Phys. 98 093711

    [3]

    Chowdhury Z R, Kherani N P 2014 Appl. Phys, Lett. 105 263902

    [4]

    Frank F, Martin B, Christian R, Martin H, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270

    [5]

    Vernhes R, Zabeida O, Klemberg-Sapieha J E, Martinu L 2006 J. Appl. Phys. 100 063308

    [6]

    Qiu H B, Li H Q, Liu B W, Zhang X, Shen Z N 2014 Chin. Phys. B 23 027301

    [7]

    Zhu X H, Chen G H, Yin S Y, Rong Y D, Zhang W L, Hu Y H 2005 Chin. Phys. Soc. 14 0834

    [8]

    Sangho K, Vinh A D, Chonghoon S, Jaehyun C, Youngseok L, Nagarajan B, Shihyun A, Youngkuk K, Junsin Y 2012 Thin Solid Films 521 45

    [9]

    Hoex B, Schmidt J J, Pohl P, Van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 044903

    [10]

    Bordihn S, Mertens V, Engelhart P, Kersten F, Mandoc M M, Muller J W, Kessel W M M 2012 ECS J. Sol-Gel Sci. Technol. 1 320

    [11]

    Tfflinger J A, Laades A, Korte L, Leendertz C, Montaez L M, Sturzebecher U, Sperlich H P, Rech B 2015 Sol. Energy Mater. Sol. Cells 135 49

    [12]

    Dingemans G, Terlinden N M, Pierreux D, Profijt H B, Sanden M C M, Kessels W M M 2011 Electrochem. Solid-State Lett. 14 H1

    [13]

    Lei Q S, Wu Z M, Geng X H, Zhao Y, Sun J, Xi J P 2006 Chin. Phys. Soc. 15 3033-06

    [14]

    Geissbuhler J, Wolf S D, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 App. Phy. Lett. 102 231604

    [15]

    Keiichiro M, Masato S, Taiki H, Daisuke F, Motohide K, Naoki Y, Tsutomu Y, Yoshinari I, Takahiro M, Naoteru M, Tsutomu Y, Tsuyoshi T, Mikio T, Eiji M, Shingo O 2014 IEEE J. Photovolt. 4 1433

    [16]

    Xue Y, Gao C J, Gu J H, Feng Y Y, Yang S E, Lu J X, Huang Q, Feng Z Q 2013 Acta Phys. Sin. 62 197301(in Chinese) [薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强 2013 物理学报 62 197301]

    [17]

    Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y, Liu C C 2014 Acta Phys. Sin. 63 136802(in Chinese) [赵振越, 张晓丹, 王奉友, 姜元建, 杜建, 高海波, 赵颖, 刘彩池 2014 物理学报 63 136802]

    [18]

    Zhu X H, Chen G H, Zhang W L, Ding Y, Ma Z J, Hu Y H, He B, Rong Y D 2005 Chin. Phys. Soc. 14 2348

    [19]

    Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Green 2 7

    [20]

    Takeshi K, Takeshi Y 2004 Solar Energy Mater. Solar Cells. 81 119

    [21]

    Stefaan D W, Michio K 2007 App. Phy. Lett. 90 042111

    [22]

    Aaesha A, Kazi I, Ammar N 2013 Sol. Energy 98 236

    [23]

    Miroslav M, Michal N, Jaroslav K, Marina F, Cosimo G, Giovanni M, Luca V, Salvatore L 2014 Mat. Sci. Eng. B 189 1

    [24]

    Bndicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 App. Phy. Lett. 101 171604

    [25]

    Oh W K, HussainS Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [26]

    Shirakata S, Sakemi T, Awai K, Yamamoto T 2006 Superlattices Microstruct. 39 218

    [27]

    Kakeno T, Sakai K, Komaki H, Yoshino K, Sakemi H, Awai K, Yamamoto T, Ikari T 2005 Mater. Sci. Eng. B 118 70

    [28]

    Thomas M, Stefan S, Maximilian S, Wolfgang R F 2008 App. Phy. Lett. 92 033504

    [29]

    Riither R, Livingstone J 1994 Thin Solid Films 251 30

    [30]

    Zhang D, Tavakoliyaraki A, Wu Y, Swaaij R. A. C. M. M. van, Zeman M 2011 Energy Procedia 8 207

    [31]

    Yablonovitch E, Allara D L, Chang C C, Gmitter T, Bright T B 1986 Phys. Rev. Lett. 57 249

    [32]

    Jonathon M, Daniel M, Andres C 2009 App. Phy. Lett. 94 162102

    [33]

    Stefaan D W, Sara O, Christophe B 2008 App. Phy. Lett. 93 032101

    [34]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 App. Phy. Lett. 96 252102

  • [1]

    Martn I, Vetter M, Orpella A, Puigdollers J, Cuevas A, Alcubilla R 2001 App. Phy. Lett. 79 2199

    [2]

    Garn M, Rau U, Brendle W, Martn I, Alcubilla R 2005 J. Appl. Phys. 98 093711

    [3]

    Chowdhury Z R, Kherani N P 2014 Appl. Phys, Lett. 105 263902

    [4]

    Frank F, Martin B, Christian R, Martin H, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270

    [5]

    Vernhes R, Zabeida O, Klemberg-Sapieha J E, Martinu L 2006 J. Appl. Phys. 100 063308

    [6]

    Qiu H B, Li H Q, Liu B W, Zhang X, Shen Z N 2014 Chin. Phys. B 23 027301

    [7]

    Zhu X H, Chen G H, Yin S Y, Rong Y D, Zhang W L, Hu Y H 2005 Chin. Phys. Soc. 14 0834

    [8]

    Sangho K, Vinh A D, Chonghoon S, Jaehyun C, Youngseok L, Nagarajan B, Shihyun A, Youngkuk K, Junsin Y 2012 Thin Solid Films 521 45

    [9]

    Hoex B, Schmidt J J, Pohl P, Van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 044903

    [10]

    Bordihn S, Mertens V, Engelhart P, Kersten F, Mandoc M M, Muller J W, Kessel W M M 2012 ECS J. Sol-Gel Sci. Technol. 1 320

    [11]

    Tfflinger J A, Laades A, Korte L, Leendertz C, Montaez L M, Sturzebecher U, Sperlich H P, Rech B 2015 Sol. Energy Mater. Sol. Cells 135 49

    [12]

    Dingemans G, Terlinden N M, Pierreux D, Profijt H B, Sanden M C M, Kessels W M M 2011 Electrochem. Solid-State Lett. 14 H1

    [13]

    Lei Q S, Wu Z M, Geng X H, Zhao Y, Sun J, Xi J P 2006 Chin. Phys. Soc. 15 3033-06

    [14]

    Geissbuhler J, Wolf S D, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 App. Phy. Lett. 102 231604

    [15]

    Keiichiro M, Masato S, Taiki H, Daisuke F, Motohide K, Naoki Y, Tsutomu Y, Yoshinari I, Takahiro M, Naoteru M, Tsutomu Y, Tsuyoshi T, Mikio T, Eiji M, Shingo O 2014 IEEE J. Photovolt. 4 1433

    [16]

    Xue Y, Gao C J, Gu J H, Feng Y Y, Yang S E, Lu J X, Huang Q, Feng Z Q 2013 Acta Phys. Sin. 62 197301(in Chinese) [薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强 2013 物理学报 62 197301]

    [17]

    Zhao Z Y, Zhang X D, Wang F Y, Jiang Y J, Du J, Gao H B, Zhao Y, Liu C C 2014 Acta Phys. Sin. 63 136802(in Chinese) [赵振越, 张晓丹, 王奉友, 姜元建, 杜建, 高海波, 赵颖, 刘彩池 2014 物理学报 63 136802]

    [18]

    Zhu X H, Chen G H, Zhang W L, Ding Y, Ma Z J, Hu Y H, He B, Rong Y D 2005 Chin. Phys. Soc. 14 2348

    [19]

    Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 Green 2 7

    [20]

    Takeshi K, Takeshi Y 2004 Solar Energy Mater. Solar Cells. 81 119

    [21]

    Stefaan D W, Michio K 2007 App. Phy. Lett. 90 042111

    [22]

    Aaesha A, Kazi I, Ammar N 2013 Sol. Energy 98 236

    [23]

    Miroslav M, Michal N, Jaroslav K, Marina F, Cosimo G, Giovanni M, Luca V, Salvatore L 2014 Mat. Sci. Eng. B 189 1

    [24]

    Bndicte D, Stefaan D W, Antoine D, Zachary C H, Christophe B 2012 App. Phy. Lett. 101 171604

    [25]

    Oh W K, HussainS Q, Lee Y J, Lee Y, Ahn S, Yi J 2012 Mater. Res. Bull. 47 3032

    [26]

    Shirakata S, Sakemi T, Awai K, Yamamoto T 2006 Superlattices Microstruct. 39 218

    [27]

    Kakeno T, Sakai K, Komaki H, Yoshino K, Sakemi H, Awai K, Yamamoto T, Ikari T 2005 Mater. Sci. Eng. B 118 70

    [28]

    Thomas M, Stefan S, Maximilian S, Wolfgang R F 2008 App. Phy. Lett. 92 033504

    [29]

    Riither R, Livingstone J 1994 Thin Solid Films 251 30

    [30]

    Zhang D, Tavakoliyaraki A, Wu Y, Swaaij R. A. C. M. M. van, Zeman M 2011 Energy Procedia 8 207

    [31]

    Yablonovitch E, Allara D L, Chang C C, Gmitter T, Bright T B 1986 Phys. Rev. Lett. 57 249

    [32]

    Jonathon M, Daniel M, Andres C 2009 App. Phy. Lett. 94 162102

    [33]

    Stefaan D W, Sara O, Christophe B 2008 App. Phy. Lett. 93 032101

    [34]

    Schulze T F, Beushausen H N, Leendertz C, Dobrich A, Rech B, Korte L 2010 App. Phy. Lett. 96 252102

  • [1] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
  • Citation:
Metrics
  • Abstract views:  423
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2015
  • Accepted Date:  03 June 2015
  • Published Online:  05 October 2015

Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon

    Corresponding author: Xu Ying, yaohuamai@163.com;xuying@hbu.edu.cn
    Corresponding author: Mai Yao-Hua, yaohuamai@163.com;xuying@hbu.edu.cn
  • 1. IHebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China;
  • 2. State Key Laboratory of Photovoltaic Materials & Technology, Yingli Group Co., Ltd., Baoding 071051, China
Fund Project:  Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2015201203, E2014201063).

Abstract: The excellent surface passivation scheme for suppression of surface recombination is a basic prerequisite to obtain high efficiency solar cells. Particularly, the HIT (heterojunction with intrinsic thin-layer) solar cell, which possesses an abrupt discontinuity of the crystal network at an interface between the crystalline silicon (c-Si) surface and the hydrogenated amorphous silicon (a-Si:H) thin film, usually causes a large density of defects in the bandgap due to a high density of dangling bonds, so it is very important for high energy conversion efficiency to obtain millisecond (ms) range of minority carrier lifetime (i. e. 2 ms). The a-Si:H, due to its excellent passivation properties obtained at low deposition temperatures and also mature processing, is still the best candidate materials for silicon HIT solar cell. Deposition of a transparent conductive oxide (TCO), such as indium tin oxide (ITO), has to be used to improve the carrier transport, since the lateral conductivity of a-Si:H is very poor. Usually, ITO is deposited by magnetron sputtering, but damage of a-Si:H layers by sputtering-induced ion bombardment inevitably occurs, thus triggering the serious degradation of the minority carrier lifetime, i. e., a loss in wafer passivation. Fortunately, this damage can be often recovered by some post-annealing. In this paper, however, the situation is different, and it is found that the minority carrier lifetime of ITO/a-Si:H/c-Si/a-Si:H heterojunction has been drastically enhanced by post-annealing after sputtering ITO on a- Si:H/c-Si/a-Si:H heterojunction (from 1.7 ms to 4.0 ms), not just recovering. It is very important to investigate how post-annealing enhances the lifetime and its physics nature. Combining the two experimental ways of HF treatment and vacuum annealing, three possible reasons for this enhancement effect (the field effect at the ITO/a-Si:H interface, the surface reaction-layer resulting from annealing in air, and the optimization of a-Si:H material itself) have been studied, suggesting this is irrelevant to the first two. The influence of post-annealing on a-Si:H/c-Si/a-Si:H heterojunction deposited at different temperatures has also been investigated. It is found that the remarkable enhancement effect of post-annealing is for low growth temperature(175 ℃) and not for high growth temperature(200 ℃), with the confirmation of an effective way for high quality passivation using growth at low temperature and then annealed at high temperature. Moreover, the configuration of a-Si:H at different growth temperatures between afore and after annealing has been discussed by an application of Fourier transform infrared (FTIR) spectroscopy. It is shown that the large increase of the lifetime of the heterojunction after annealing results from the improvement of microstructure of a-Si:H itself, which is essentially a competitive balance of the dominant role of some micro-factors, including hydrogen content, hydrogen bonding and network disorder in amorphous silicon film determined by the optimized matching between the growth temperature of a-Si:H materials and the annealing temperature of the heterojunction. An optimum control for this balance point is the essential cause of lifetime enhancement.

Reference (34)

Catalog

    /

    返回文章
    返回