Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices

Wang Kai Xing Yan-Hui Han Jun Zhao Kang-Kang Guo Li-Jian Yu Bao-Ning Deng Xu-Guang Fan Ya-Ming Zhang Bao-Shun

Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices

Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun
PDF
Get Citation
  • Fe-doped high-resistivity GaN films and AlGaN/GaN high electron mobility transistor (HEMT) structures have been grown on sapphire substrates by metal organic chemical vapor deposition. The lattice quality, surfaces, sheet resistances and luminescent characteristics of Fe-doped high-resistivity GaN with different Cp2Fe flow rates are studied. It is found that high resistivity can be obtained by Fe impurity introduced Fe3+/2+ deep acceptor level in GaN, which compensates for the background carrier concentration. Meanwhile, Fe impurity can introduce more edge dislocations acting as acceptors, which also compensate for the background carrier concentration to some extent. In a certain range, the sheet resistance of GaN material increases with increasing Cp2Fe flow rate. When the Cp2Fe flow rate is 100 sccm, the compensation efficiency decreases due to the self-compensation effect, which leads to the fact that the increase of the sheet resistance of GaN material is not obvious. In addition, the compensation for Fe atom at the vacancy of Ga atom can be explained as the result of suppressing yellow luminescence. Although the lattice quality is marginally affected while the Cp2Fe flow rate is 50 sccm, the increase of Cp2Fe flow rate will lead to a deterioration in quality due to the damage to the lattice, which is because more Ga atoms are substituted by Fe atoms. Meanwhile, Fe on the GaN surface reduces the surface mobilities of Ga atoms and promotes a transition from two-dimensional to three-dimensional (3D) GaN growth, which is confirmed by atomic force microscope measurements of RMS roughness with increasing Cp2Fe flow rate. The island generated by the 3D GaN growth will produce additional edge dislocations during the coalescence, resulting in the increase of the full width at half maximum of the X-ray diffraction rocking curve at the GaN (102) plane faster than that at the GaN (002) plane with increasing Cp2Fe flow rate. Therefore, the Cp2Fe flow rate of 75 sccm, which makes the sheet resistance of GaN as high as 1 1010 /\Box, is used to grow AlGaN/GaN HEMT structures with various values of Fe-doped layer thickness, which are processed into devices. All the HEMT devices possess satisfactory turn-off and gate-controlled characteristics. Besides, the increase of Fe-doped layer thickness can improve the breakdown voltage of the HEMT device by 39.3%, without the degradation of the transfer characteristic.
      Corresponding author: Xing Yan-Hui, xingyanhui@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61204011, 11204009, 61574011), the Natural Science Foundation of Beijing, China (Grant No. 4142005), and the Scientific Reasearch Fund Project of Municipal Education Commission of Beijing, China (Grant No. PXM2014_014204_07_000018).
    [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302 (in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [2]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [3]

    Wang C, Zhang K, He Y L, Zhang X F, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. Lett. 31 128501

    [4]

    Shrestha N M, Wang Y Y, Li Y, Chang E Y 2015 Vacuum 118 59

    [5]

    Zhou X Y, Feng Z H, Wang Y G, Gu G D, Song X B, Cai S J 2015 Chin. Phys. B 24 048503

    [6]

    Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q, Wang Z G 2015 Chin. Phys. Lett. 32 058501

    [7]

    Tang C, Xie G, Sheng K 2015 Microelectron. Reliab. 55 347

    [8]

    Li C, Li Z, Peng D, Ni J, Pan L, Zhang D, Dong X, Kong Y 2015 Semicond. Sci. Tech. 30 035007

    [9]

    Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D 2009 Phys. Status Solidi A 206 1221

    [10]

    Gamarra P, Lacam C, Tordjman M, Splettst Sser J R, Schauwecker B, di Forte-Poisson M 2015 J. Cryst. Growth 414 232

    [11]

    Luo W, Li L, Li Z, Dong X, Peng D, Zhang D, Xu X 2015 J. Alloy. Compd. 633 494

    [12]

    Ishiguro T, Yamada A, Kotani J, Nakamura N, Kikkawa T, Watanabe K, Imanishi K 2013 Jpn. J. Appl. Phys. 52 08JB17

    [13]

    Li M, Wang Y, Wong K, Lau K 2014 Chin. Phys. B 23 038403

    [14]

    Choi Y C, Shi J, Pophristic M, Spencer M G, Eastman L F 2007 J. Vac. Sci. Technol. B 25 1836

    [15]

    Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502

    [16]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [17]

    Balmer R S, Soley D E J, Simons A J, Mace J D, Koker L, Jackson P O, Wallis D J, Uren M J, Martin T 2006 Phys. Stat. Sol. 3 1429

    [18]

    Lu D C, Duan S K 2009 Fundamental and Application of Metalorganic Vapor Phase Epitaxy (Beijing: Science Press) p201 (in Chinese) [陆大成, 段树坤 2009 金属有机化合物气相外延基础及应用 (北京:科学出版社) 第201页]

    [19]

    Heikman S, Keller S, Denbaars S P, Mishra U K 2002 Appl. Phys. Lett. 81 439

    [20]

    van Nostrand J E, Solomon J, Saxler A, Xie Q H, Reynolds D C, Look D C 2000 J. Appl. Phys. 87 8766

    [21]

    Heitz R, Maxim P, Eckey L, Thurian P, Hoffmann A, Broser I, Pressel K, Meyer B K 1997 Phys. Rev. B 55 4382

    [22]

    Mita S, Collazo R, Dalmau R, Sitar Z 2007 Phys. Stat. Sol. 4 2260

    [23]

    Kuriyama K, Mizuki Y, Sano H, Onoue A, Hasegawa M, Sakamoto I 2005 Solid State Commun. 135 99

    [24]

    Feng Z H, Liu B, Yuan F P, Yin J Y, Liang D, Li X B, Feng Z, Yang K W, Cai S J 2007 J. Cryst. Growth 309 8

    [25]

    Zhang Z L, Yu G H, Zhang X D, Tan S X, Wu D D, Fu K, Huang W, Cai Y, Zhang B S 2015 Electron. Lett. 51 1201

  • [1] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [2] Gao Hong-Ling, Li Dong-Lin, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping, Zhou Wen-Zheng, Shang Li-Yan. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [3] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [4] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [5] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [6] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [7] Gong Min, Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [8] XU DE-MING, Lv YONG-LIANG, ZHOU SHI-PING. ANALYSIS OF PROPERTIES OF HIGH-ELECTRON-MOBILITY-TRANSISTOR UNDER OPTICAL ILLUMI NATION. Acta Physica Sinica, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
    [9] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [11] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [12] Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong. High power microwave damage mechanism on high electron mobility transistor. Acta Physica Sinica, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [13] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [14] Gong Min, Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [15] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [16] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming, Liu Jian, Liu Xin-Yu. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [17] Liu Hong-Xia, Hao Yue, Zhang Tao, Zheng Xue-Feng, Ma Xiao-Hua. Study on the kink effect in AlGaAs/InGaAs/GaAs PHEMTs. Acta Physica Sinica, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [18] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [19] Zhu Yan-Xu, Song Hui-Hui, Wang Yue-Hua, Li Lai-Long, Shi Dong. Design and fabrication of high electron mobility transistor devices with gallium nitride-based. Acta Physica Sinica, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [20] Zhang Yong, Tang Chao-Qun, Dai Jun. Anatase TiO2 and red-shift introduced by doping with Fe:pseudopotential calculations and ultraviolet spectroscropy. Acta Physica Sinica, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
  • Citation:
Metrics
  • Abstract views:  556
  • PDF Downloads:  252
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2015
  • Accepted Date:  14 October 2015
  • Published Online:  05 January 2016

Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices

    Corresponding author: Xing Yan-Hui, xingyanhui@bjut.edu.cn
  • 1. Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
  • 2. Key Laboratory of Nano Devices and Applications, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 61204011, 11204009, 61574011), the Natural Science Foundation of Beijing, China (Grant No. 4142005), and the Scientific Reasearch Fund Project of Municipal Education Commission of Beijing, China (Grant No. PXM2014_014204_07_000018).

Abstract: Fe-doped high-resistivity GaN films and AlGaN/GaN high electron mobility transistor (HEMT) structures have been grown on sapphire substrates by metal organic chemical vapor deposition. The lattice quality, surfaces, sheet resistances and luminescent characteristics of Fe-doped high-resistivity GaN with different Cp2Fe flow rates are studied. It is found that high resistivity can be obtained by Fe impurity introduced Fe3+/2+ deep acceptor level in GaN, which compensates for the background carrier concentration. Meanwhile, Fe impurity can introduce more edge dislocations acting as acceptors, which also compensate for the background carrier concentration to some extent. In a certain range, the sheet resistance of GaN material increases with increasing Cp2Fe flow rate. When the Cp2Fe flow rate is 100 sccm, the compensation efficiency decreases due to the self-compensation effect, which leads to the fact that the increase of the sheet resistance of GaN material is not obvious. In addition, the compensation for Fe atom at the vacancy of Ga atom can be explained as the result of suppressing yellow luminescence. Although the lattice quality is marginally affected while the Cp2Fe flow rate is 50 sccm, the increase of Cp2Fe flow rate will lead to a deterioration in quality due to the damage to the lattice, which is because more Ga atoms are substituted by Fe atoms. Meanwhile, Fe on the GaN surface reduces the surface mobilities of Ga atoms and promotes a transition from two-dimensional to three-dimensional (3D) GaN growth, which is confirmed by atomic force microscope measurements of RMS roughness with increasing Cp2Fe flow rate. The island generated by the 3D GaN growth will produce additional edge dislocations during the coalescence, resulting in the increase of the full width at half maximum of the X-ray diffraction rocking curve at the GaN (102) plane faster than that at the GaN (002) plane with increasing Cp2Fe flow rate. Therefore, the Cp2Fe flow rate of 75 sccm, which makes the sheet resistance of GaN as high as 1 1010 /\Box, is used to grow AlGaN/GaN HEMT structures with various values of Fe-doped layer thickness, which are processed into devices. All the HEMT devices possess satisfactory turn-off and gate-controlled characteristics. Besides, the increase of Fe-doped layer thickness can improve the breakdown voltage of the HEMT device by 39.3%, without the degradation of the transfer characteristic.

Reference (25)

Catalog

    /

    返回文章
    返回