Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide

Li Ming-Lin Wan Ya-Ling Hu Jian-Yue Wang Wei-Dong

Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide

Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong
PDF
Get Citation
  • Recently, the effect of temperature on the mechanical property (the Young's modulus) of the single-layer molybdenum disulfide (SLMoS2) is shown to be insignificant, which is obviously incompatible with the previously published result, i. e. the Young's modulus of SLMOS2 decreases monotonically as temperature increases. Aiming at clarifying the relationships between the mechanical properties of the single-layer molybdenum disulfide (SLMoS2) along the armchair (AC) and zigzag (ZZ) directions and the temperature, classical molecular dynamics (MD) simulations are performed to stretch the SLMoS2 along the AC and ZZ directions at the temperatures ranging from 1 K to 800 K by using the Stillinger-Weber (SW) interatomic potentials in this paper. The mechanical properties of SLMoS2 at the temperatures ranging from 1 K to 800 K, including ultimate strength, ultimate strain, and Young's Modulus, are calculated based on the stress-strain results obtained from the simulations. Results are obtained and given as follows. (1) The mechanical properties of the SLMoS2, including the ultimate strength and Young's modulus, are found to monotonically decrease as temperature increases. Increasing the temperature, the ultimate strength of SLMoS2 in the AC direction drops faster than in the ZZ direction, whereas the Young's modulus of SLMoS2 in the ZZ direction decreases quicker than in the AC direction, which means that the chirality effect on the ultimate strength is remarkably different from the Young's modulus of SLMoS2. However, the ultimate strain in the ZZ direction at the temperatures in a range from 1 K to 800 K is close to that in the AC direction, which means that the effect of chirality on the ultimate strain is insignificant. (2) Unlike the published results in the literature, the phase transition of SLMoS2 is found to only occur at a temperature of 1 K and at the moment of initial crack formation as tensiled along the ZZ direction, and the new phase of quadrilateral structure keeps stable after unloading. (3) The linear thermal expansion coefficients along the ZZ and AC directions are also measured, the magnitudes of which are found to be consistent with the published experimental results. Our simulation results support the viewpoint that the effect of the temperature on the mechanical property of SLMoS2 is significant, and the SLMoS2 can be regarded as an anisotropic material as the chirality effect cannot be ignored. The linear thermal expansion coefficients obtained with MD simulation are all in good agreement with the experimental data.
      Corresponding author: Li Ming-Lin, liminglin@fzu.edu.cn;wangwd@mail.xidian.edu.cn ; Wang Wei-Dong, liminglin@fzu.edu.cn;wangwd@mail.xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 50903017, 51205302).
    [1]

    Savan A, Pflger E, Voumard P, Schrer A, Simmonds M 2000 Lubr. Sci. 12 185

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2011 ACS Nano 6 74

    [4]

    Lee J, Wang Z, He K, Shan J, Feng P X L 2013 ACS Nano 7 6086

    [5]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun. 5

    [6]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910

    [7]

    Li T 2012 Phys. Rev. B 85 235407

    [8]

    Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J 2012 Phys. Lett. A 376 1166

    [9]

    Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y 2001 Chem. Lett. 772

    [10]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [11]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423

    [12]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S, Agrat N, Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 1

    [13]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [14]

    Xiong S, Cao G 2015 Nanotechnology 26 185705

    [15]

    Jiang J W, Park H S 2014 Appl. Phys. Lett. 105 033108

    [16]

    Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913

    [17]

    Gamboa A, Vignoles G L, Leyssale J M 2015 Carbon 89 176

    [18]

    Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 物理学报 62 016102]

    [19]

    Shang F L, Guo X C, BeiCun L H, MeiYe Y C 2010 Advances in Mechanics 40 263 (in Chinese) [尚福林, 郭显聪, 北村隆行, 梅野宜崇 2010 力学进展 40 263]

    [20]

    Li M L, Wan Y L, Tu L P, Yang Y C, Lou J 2016 Nanoscale Res. Lett. 11 155

    [21]

    Wang W, Li S, Min J, Yi C, Zhan Y, Li M L 2014 Nanoscale Res. Lett. 9 41

    [22]

    Jiang J W 2015 Nanotechnology 26 315706

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [25]

    Han T W, He P F, Wang J, Wu A H 2009 J. Tongji University(Natural Science) 37 1638 (in Chinese) [韩同伟, 贺鹏飞, 王健, 吴艾辉 2009 同济大学学报: 自然科学版 37 1638]

    [26]

    Liu T, Liu M S 2014 Materials For Mechanical Engineering 38 73 (in Chinese) [刘彤, 刘敏珊 2014 机械工程材料 38 73]

    [27]

    El-Mahalawy S, Evans B 1976 J. Appl. Crystallogr. 9 403

    [28]

    Zhao J, Kou L, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701

  • [1]

    Savan A, Pflger E, Voumard P, Schrer A, Simmonds M 2000 Lubr. Sci. 12 185

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [3]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2011 ACS Nano 6 74

    [4]

    Lee J, Wang Z, He K, Shan J, Feng P X L 2013 ACS Nano 7 6086

    [5]

    Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya P E, Liu Z, Gong Y, Zhang J, Zhang X 2014 Nat. Commun. 5

    [6]

    Gan Y, Zhao H 2014 Phys. Lett. A 378 2910

    [7]

    Li T 2012 Phys. Rev. B 85 235407

    [8]

    Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J 2012 Phys. Lett. A 376 1166

    [9]

    Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y 2001 Chem. Lett. 772

    [10]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [11]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423

    [12]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S, Agrat N, Rubio-Bollinger G 2012 Nanoscale Res. Lett. 7 1

    [13]

    Jiang J W, Park H S, Rabczuk T 2013 J. Appl. Phys. 114 064307

    [14]

    Xiong S, Cao G 2015 Nanotechnology 26 185705

    [15]

    Jiang J W, Park H S 2014 Appl. Phys. Lett. 105 033108

    [16]

    Zhao J, Jiang J W, Rabczuk T 2013 Appl. Phys. Lett. 103 231913

    [17]

    Gamboa A, Vignoles G L, Leyssale J M 2015 Carbon 89 176

    [18]

    Li M L, Lin F, Chen Y 2013 Acta Phys. Sin. 62 016102 (in Chinese) [李明林, 林凡, 陈越 2013 物理学报 62 016102]

    [19]

    Shang F L, Guo X C, BeiCun L H, MeiYe Y C 2010 Advances in Mechanics 40 263 (in Chinese) [尚福林, 郭显聪, 北村隆行, 梅野宜崇 2010 力学进展 40 263]

    [20]

    Li M L, Wan Y L, Tu L P, Yang Y C, Lou J 2016 Nanoscale Res. Lett. 11 155

    [21]

    Wang W, Li S, Min J, Yi C, Zhan Y, Li M L 2014 Nanoscale Res. Lett. 9 41

    [22]

    Jiang J W 2015 Nanotechnology 26 315706

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [25]

    Han T W, He P F, Wang J, Wu A H 2009 J. Tongji University(Natural Science) 37 1638 (in Chinese) [韩同伟, 贺鹏飞, 王健, 吴艾辉 2009 同济大学学报: 自然科学版 37 1638]

    [26]

    Liu T, Liu M S 2014 Materials For Mechanical Engineering 38 73 (in Chinese) [刘彤, 刘敏珊 2014 机械工程材料 38 73]

    [27]

    El-Mahalawy S, Evans B 1976 J. Appl. Crystallogr. 9 403

    [28]

    Zhao J, Kou L, Jiang J W, Rabczuk T 2014 Nanotechnology 25 295701

  • [1] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [2] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [3] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [4] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [5] Xiao Jing-Lin, Chen Ying-Jie. The temperature effect of the parabolic linear bound potential quantum dot qubit. Acta Physica Sinica, 2008, 57(11): 6758-6762. doi: 10.7498/aps.57.6758
    [6] Wu Ya-Min, Chen Guo-Qing. Effect of temperature on optical bistability of coated granular composites. Acta Physica Sinica, 2009, 58(3): 2056-2060. doi: 10.7498/aps.58.2056
    [7] Hu Xue-Lan, Luo Yang, Zhao Ruo-Xi, Hu Yan-Min, Song Qing-Gong. First-principles studies of multiple trapped impurity C by Ni vacancy and temperature effects in NiAl intermetallics. Acta Physica Sinica, 2016, 65(20): 206101. doi: 10.7498/aps.65.206101
    [8] Jin Xin, Yang Chun-Ming, Hua Wen-Qiang, Li Yi-Wen, Wang Jie. Temperature dependence of spherical micelles of PS3000-b-PAA5000 studied by in-situ small angle X-ray scattering. Acta Physica Sinica, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [9] Guo Qiao-Neng, Cao Yi-Gang, Sun Qiang, Liu Zhong-Xia, Jia Yu, Huo Yu-Ping. Temperature dependence of fatigue properties of ultrathin copper films: molecular dynamics simulations. Acta Physica Sinica, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [10] Wang Yun-Tian, Zeng Xiang-Guo, Yang Xin. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate. Acta Physica Sinica, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [11] Shan Lei, Tian Yu, Meng Yong-Gang, Zhang Xiang-Jun. Influences of medium and temperature on the shear thickening behavior of nano fumed silica colloids. Acta Physica Sinica, 2015, 64(6): 068301. doi: 10.7498/aps.64.068301
    [12] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [13] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [14] Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang. Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle. Acta Physica Sinica, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [15] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [16] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [17] Liu Yan, Dong Yun-Shan, Yue Jian-Ling, Li Ge-Yang. Crystal growth and superhardness effects of ZrN/AlON nanomultilayers synthesized by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [18] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [19] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [20] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
  • Citation:
Metrics
  • Abstract views:  395
  • PDF Downloads:  304
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2016
  • Accepted Date:  25 June 2016
  • Published Online:  05 September 2016

Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide

Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 50903017, 51205302).

Abstract: Recently, the effect of temperature on the mechanical property (the Young's modulus) of the single-layer molybdenum disulfide (SLMoS2) is shown to be insignificant, which is obviously incompatible with the previously published result, i. e. the Young's modulus of SLMOS2 decreases monotonically as temperature increases. Aiming at clarifying the relationships between the mechanical properties of the single-layer molybdenum disulfide (SLMoS2) along the armchair (AC) and zigzag (ZZ) directions and the temperature, classical molecular dynamics (MD) simulations are performed to stretch the SLMoS2 along the AC and ZZ directions at the temperatures ranging from 1 K to 800 K by using the Stillinger-Weber (SW) interatomic potentials in this paper. The mechanical properties of SLMoS2 at the temperatures ranging from 1 K to 800 K, including ultimate strength, ultimate strain, and Young's Modulus, are calculated based on the stress-strain results obtained from the simulations. Results are obtained and given as follows. (1) The mechanical properties of the SLMoS2, including the ultimate strength and Young's modulus, are found to monotonically decrease as temperature increases. Increasing the temperature, the ultimate strength of SLMoS2 in the AC direction drops faster than in the ZZ direction, whereas the Young's modulus of SLMoS2 in the ZZ direction decreases quicker than in the AC direction, which means that the chirality effect on the ultimate strength is remarkably different from the Young's modulus of SLMoS2. However, the ultimate strain in the ZZ direction at the temperatures in a range from 1 K to 800 K is close to that in the AC direction, which means that the effect of chirality on the ultimate strain is insignificant. (2) Unlike the published results in the literature, the phase transition of SLMoS2 is found to only occur at a temperature of 1 K and at the moment of initial crack formation as tensiled along the ZZ direction, and the new phase of quadrilateral structure keeps stable after unloading. (3) The linear thermal expansion coefficients along the ZZ and AC directions are also measured, the magnitudes of which are found to be consistent with the published experimental results. Our simulation results support the viewpoint that the effect of the temperature on the mechanical property of SLMoS2 is significant, and the SLMoS2 can be regarded as an anisotropic material as the chirality effect cannot be ignored. The linear thermal expansion coefficients obtained with MD simulation are all in good agreement with the experimental data.

Reference (28)

Catalog

    /

    返回文章
    返回