Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition

Xu Ting-Ting Li Yi Chen Pei-Zu Jiang Wei Wu Zheng-Yi Liu Zhi-Min Zhang Jiao Fang Bao-Ying Wang Xiao-Hua Xiao Han

Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition

Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han
PDF
Get Citation
  • Electric field induced semiconductor-metal transition characteristics of VO2 indicate extensive application prospects in smart window,storage device,intelligent radiator,signal generator,optical switch,etc.In order to explore the electric field induced semiconductor-metal transition characteristics of VO2,AZO/VO2/AZO sandwiched structure is prepared to study the problem of optical modulation under the action of applied electrical drive.Firstly,V thin film is fabricated by direct current magnetron sputtering on a ZnO-doped Al (AZO) conductive glass substrate.The operating pressure during sputtering is kept at 3.610-1 Pa,and the sputtering current and voltage are 2 A and 400 V,respectively.The VO2/AZO composite film is prepared by annealing under the air atmosphere for 3.5 h at 400℃.Secondly,another AZO conductive film is deposited by radio frequency magnetron sputtering on the top of the VO2 thin film.Thirdly, Pt electrodes are patterned on the bottom and top of AZO conductive glass by using photolithography and chemical etching processes,and finally AZO/VO2/AZO sandwiched structure is achieved.The crystal structure of the thin film is analyzed by X-ray diffraction (XRD) apparatus.The surface morphologies of the samples were studied by atomic force microscope (AFM).X-ray photoelectron spectroscopy (XPS) system is used to study the relative quantity of the surface elements.The current-voltage characteristics are measured by semiconductor parameter analyzer.The optical properties of the AZO/VO2/AZO sandwiched structure are determined by spectrophotometer.XRD results show that the VO2 thin film has a distinct (011) preferred orientation and well-crystallized structure.AFM results indicate that the VO2 thin film has compact nanostructure and smooth surface with a surface roughness of 5.975 nm.XPS results reveal that the VO2 thin film has high purity.Optical transmittance curves show that the maximum change of the optical transmittance measured from VO2/AZO composite film during the phase transformation is 24% at 800-2300 nm,while the maximum modulation of the transmittance of AZO/VO2/AZO sandwiched structure reaches 31% in the same wavelength range. When applying different voltages to AZO/VO2/AZO sandwiched structure at different ambient temperatures,the current abrupt change can be seen at the threshold voltage.The threshold voltage of the thin film phase transition is 8.1 V at 20℃,while the threshold voltage is 5.9 V at 40℃.However,the threshold voltage is zero at 60℃,which indicates that the semiconductor-metal transition of the VO2 thin film happens at that temperature.It can be found that the higher the ambient temperature,the lower the threshold voltage is.AZO/VO2/AZO sandwiched structure has stable properties with simple preparation technology,and its modulation property meets the performance requirements for electro-optic modulator under applying the electrical drive,which is expected to be applied to the integrated infrared modulator.
      Corresponding author: Li Yi, optolyclp@263.net
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education, China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415), the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lee M H, Kim M G, Song H K 1996 Thin Solid Films 290 30

    [3]

    Maaza M, Hamidi D, Gibaud A, Kana J B K 2011 ICTON 29 1

    [4]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C 2005 Appl. Phys. Lett. 87 51910

    [5]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [6]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [7]

    Lee J S, Ortolani M, Ginolas A, Chang Y J, Noh T W, Schade U 2007 Physica C 460 549

    [8]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics·Laser 22 656(in Chinese)[张楷亮, 韦晓莹, 王芳, 武长强, 赵金石2011光电子·激光 22 656]

    [9]

    Fang B Y, Li Y, Tong G X, Wang X H, Yan M, Liang Q, Wang F, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2015 Opt. Mater. 47 225

    [10]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Dev. Lett. 32 1582

    [11]

    Soltani M, Chaker M, Haddad E, Kruzelecky R 2006 Mea. Sci. Technol. 17 1052

    [12]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [13]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.:Conden. Matter 12 8837

    [14]

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160(in Chinese)[梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达2012纳米技术与精密工程 10 160]

    [15]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武2013物理学报 62 217201]

    [16]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [17]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017202 (in Chinese)[熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰2015物理学报 64 017102]

    [18]

    Markov P, Ryckman J D, Marvel R E, Hallman K A, Haglund R F, Weiss S M 2013 CLEO 2013 CTu2F.7

    [19]

    Schuler T, Aegerter M A 1999 Thin Solid Films 351 125

    [20]

    Perkins J D, Cueto J A D, Alleman J L, Warmsinghb C, Keyesa B M, Gedvilasa L M, Parillaa P A, Toa B, Readeyb D W, Ginleya D S 2002 Thin Solid Films 411 152

    [21]

    Yuan W R, Li Y, Wang X H, Zheng H Z, Chen S J, Chen J K, Sun Y, Tang J Y, Liu F, Hao R L, Fang B Y, Xiao H 2014 Acta Phys. Sin. 63 218101 (in Chinese)[袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒2014物理学报 63 218101]

    [22]

    Xiao H, Li Y, Yuan W R, Fang B Y, Wang X H, Hao R L, Wu Z Y, Xu T T, Jiang W, Chen P Z 2016 Infrared Phys. Technol. 76 580

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lee M H, Kim M G, Song H K 1996 Thin Solid Films 290 30

    [3]

    Maaza M, Hamidi D, Gibaud A, Kana J B K 2011 ICTON 29 1

    [4]

    Brassard D, Fourmaux S, Jean-Jacques M, Kieffer J C 2005 Appl. Phys. Lett. 87 51910

    [5]

    Chen C H, Fan Z Y 2009 Appl. Phys. Lett. 95 262106

    [6]

    Chae B G, Kim H T, Youn D H, Kang K Y 2005 Physica B 369 76

    [7]

    Lee J S, Ortolani M, Ginolas A, Chang Y J, Noh T W, Schade U 2007 Physica C 460 549

    [8]

    Zhang K L, Wei X Y, Wang F, Wu C Q, Zhao J S 2011 J. Optoelectronics·Laser 22 656(in Chinese)[张楷亮, 韦晓莹, 王芳, 武长强, 赵金石2011光电子·激光 22 656]

    [9]

    Fang B Y, Li Y, Tong G X, Wang X H, Yan M, Liang Q, Wang F, Qin Y, Ding J, Chen S J, Chen J K, Zheng H Z, Yuan W R 2015 Opt. Mater. 47 225

    [10]

    Seo G, Kim B J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Dev. Lett. 32 1582

    [11]

    Soltani M, Chaker M, Haddad E, Kruzelecky R 2006 Mea. Sci. Technol. 17 1052

    [12]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [13]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.:Conden. Matter 12 8837

    [14]

    Liang J R, Hu M, Kan Q, Hou S B, Liang X Q, Chen H D 2012 Nanotechnology and Precision Engineering 10 160(in Chinese)[梁继然, 胡明, 阚强, 后顺保, 梁秀琴, 陈弘达2012纳米技术与精密工程 10 160]

    [15]

    Qiu D H, Wen Q Y, Yang Q H, Chen Z, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 217201 (in Chinese)[邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武2013物理学报 62 217201]

    [16]

    Lee J S, Ortolani M, Kouba J, Firsov A, Chang Y J, Noh T W, Schade U 2008 Infrared Phys. Technol. 51 443

    [17]

    Xiong Y, Wen Q Y, Tian W, Mao Q, Chen Z, Yang Q H, Jing Y L 2015 Acta Phys. Sin. 64 017202 (in Chinese)[熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰2015物理学报 64 017102]

    [18]

    Markov P, Ryckman J D, Marvel R E, Hallman K A, Haglund R F, Weiss S M 2013 CLEO 2013 CTu2F.7

    [19]

    Schuler T, Aegerter M A 1999 Thin Solid Films 351 125

    [20]

    Perkins J D, Cueto J A D, Alleman J L, Warmsinghb C, Keyesa B M, Gedvilasa L M, Parillaa P A, Toa B, Readeyb D W, Ginleya D S 2002 Thin Solid Films 411 152

    [21]

    Yuan W R, Li Y, Wang X H, Zheng H Z, Chen S J, Chen J K, Sun Y, Tang J Y, Liu F, Hao R L, Fang B Y, Xiao H 2014 Acta Phys. Sin. 63 218101 (in Chinese)[袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒2014物理学报 63 218101]

    [22]

    Xiao H, Li Y, Yuan W R, Fang B Y, Wang X H, Hao R L, Wu Z Y, Xu T T, Jiang W, Chen P Z 2016 Infrared Phys. Technol. 76 580

  • [1] Zhang Jiao, Li Yi, Liu Zhi-Min, Li Zheng-Peng, Huang Ya-Qin, Pei Jiang-Heng, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film. Acta Physica Sinica, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [2] Hao Ru-Long, Li Yi, Liu Fei, Sun Yao, Tang Jia-Yin, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Xu Ting-Ting, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure. Acta Physica Sinica, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [3] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [4] Wang Ya-Qin, Yao Gang, Huang Zi-Jian, Huang Ying. Infrared laser protection of multi-wavelength with high optical switching efficiency VO2 film. Acta Physica Sinica, 2016, 65(5): 057102. doi: 10.7498/aps.65.057102
    [5] Zhang Zhi-Feng, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Song Jian-Jun. Threshold voltage model of strained Si channel nMOSFET. Acta Physica Sinica, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [6] Qu Jiang-Tao, Zhang He-Ming, Wang Guan-Yu, Wang Xiao-Yan, Hu Hui-Yong. Threshold voltage model for quantum-well channelpMOSFET with poly SiGe gate. Acta Physica Sinica, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [7] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [8] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Su Bin, Wang Bin, Wang Guan-Yu. Physical compact modeling for threshold voltage of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [9] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [10] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E. An analytical model of MOSFET threshold voltage with considiring the quantum effects. Acta Physica Sinica, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
  • Citation:
Metrics
  • Abstract views:  345
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2016
  • Accepted Date:  20 August 2016
  • Published Online:  20 December 2016

Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition

    Corresponding author: Li Yi, optolyclp@263.net
  • 1. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
  • 2. Shanghai Key Laboratory of Modern Optical System, Shanghai 200093, China;
  • 3. Department of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
  • 4. College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Foundation for Key Program of Ministry of Education, China (Grant No. 207033), the Science and Technology Research Project of Shanghai Science and Technology Commission, China (Grant No. 06DZ11415), the Key Science and Technology Research Project of Shanghai Committee, China (Grant No. 10ZZ94), and the Shanghai Talent Leading Plan, China (Grant No. 2011-026).

Abstract: Electric field induced semiconductor-metal transition characteristics of VO2 indicate extensive application prospects in smart window,storage device,intelligent radiator,signal generator,optical switch,etc.In order to explore the electric field induced semiconductor-metal transition characteristics of VO2,AZO/VO2/AZO sandwiched structure is prepared to study the problem of optical modulation under the action of applied electrical drive.Firstly,V thin film is fabricated by direct current magnetron sputtering on a ZnO-doped Al (AZO) conductive glass substrate.The operating pressure during sputtering is kept at 3.610-1 Pa,and the sputtering current and voltage are 2 A and 400 V,respectively.The VO2/AZO composite film is prepared by annealing under the air atmosphere for 3.5 h at 400℃.Secondly,another AZO conductive film is deposited by radio frequency magnetron sputtering on the top of the VO2 thin film.Thirdly, Pt electrodes are patterned on the bottom and top of AZO conductive glass by using photolithography and chemical etching processes,and finally AZO/VO2/AZO sandwiched structure is achieved.The crystal structure of the thin film is analyzed by X-ray diffraction (XRD) apparatus.The surface morphologies of the samples were studied by atomic force microscope (AFM).X-ray photoelectron spectroscopy (XPS) system is used to study the relative quantity of the surface elements.The current-voltage characteristics are measured by semiconductor parameter analyzer.The optical properties of the AZO/VO2/AZO sandwiched structure are determined by spectrophotometer.XRD results show that the VO2 thin film has a distinct (011) preferred orientation and well-crystallized structure.AFM results indicate that the VO2 thin film has compact nanostructure and smooth surface with a surface roughness of 5.975 nm.XPS results reveal that the VO2 thin film has high purity.Optical transmittance curves show that the maximum change of the optical transmittance measured from VO2/AZO composite film during the phase transformation is 24% at 800-2300 nm,while the maximum modulation of the transmittance of AZO/VO2/AZO sandwiched structure reaches 31% in the same wavelength range. When applying different voltages to AZO/VO2/AZO sandwiched structure at different ambient temperatures,the current abrupt change can be seen at the threshold voltage.The threshold voltage of the thin film phase transition is 8.1 V at 20℃,while the threshold voltage is 5.9 V at 40℃.However,the threshold voltage is zero at 60℃,which indicates that the semiconductor-metal transition of the VO2 thin film happens at that temperature.It can be found that the higher the ambient temperature,the lower the threshold voltage is.AZO/VO2/AZO sandwiched structure has stable properties with simple preparation technology,and its modulation property meets the performance requirements for electro-optic modulator under applying the electrical drive,which is expected to be applied to the integrated infrared modulator.

Reference (22)

Catalog

    /

    返回文章
    返回