Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analyses of the effect of mismatch on the performance of inverted GaInP/InxGa1-xAs/InyGa1-yAs triple-junction solar cells

Ma Da-Yan Chen Nuo-Fu Fu Rui Liu Hu Bai Yi-Ming Mi Zhe Chen Ji-Kun

Analyses of the effect of mismatch on the performance of inverted GaInP/InxGa1-xAs/InyGa1-yAs triple-junction solar cells

Ma Da-Yan, Chen Nuo-Fu, Fu Rui, Liu Hu, Bai Yi-Ming, Mi Zhe, Chen Ji-Kun
PDF
Get Citation
  • The traditional lattice matched GaInP/(In) GaAs/Ge triple-junction (3J) solar cell has no much room to enhance its practical achievable conversion efficiency because of its inappropriate ensemble of bandgap energies. According to the P-N junction formation mechanism and the close equilibrium condition, we explore a series of computational codes in the framework of MATLAB to simulate and optimize the inverted structure of series-connected 3J solar cells with a fixed top bandgap of 1.90 eV on GaAs substrate. In this paper, structural optimization is conducted in the real device design, because the realistic (QE) is closely related to a set of material parameters in the subcell, i.e., the absorbtion coefficient of material, subcell thickness, minority carrier diffusion length, surface recombination velocity, etc. The results indicate improved inverted 3J solar cells with nearly optimized bandgaps of 1.90, 1.38, and 0.94 eV, by utilizing two independently lattice-mismatches (0.17% and 2.36% misfit respectively) to the GaAs substrate. A theoretical efficiency of 51.25% at 500 suns is demonstrated with this inverted design with the optimal thickness (4 m GaInP top and 3.1 m InGaAs middle). By contrast, the efficiency with the infinite thickness of subcells is reduced by 1%, which is mainly attributed to the effect of minority carrier recombination on Jsc. Exactly speaking, if photo-generated carriers make a contribution to Jsc, they must be collected effectively by the P-N junction before recombining. A new model is proposed based on the effect of dislocation on the metamorphic structure properties by regarding dislocation as minority-carrier recombination center. Our calculation indicates that threading dislocations density in the middle junction is approximate to 1.70105 cm-2 when dislocations in the gradient buffer layer are neglected. The theoretical efficiency is increased by 0.3% compared with the inverted design containing a single metamorphic junction. As a result, based on the two metamorphic combinations, a solar cell with an area of 30.25 mm2 is prepared. The efficiency of the designed cell with two lattice-mismatched junctions reaches 40.01% at 500 suns (AM1.5D, 38.4 W/cm2, 25℃), which is 0.4% higher than that of the single metamorphic junction 3J solar cell.
      Corresponding author: Chen Nuo-Fu, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn ; Chen Ji-Kun, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing,China (Grant No.2151004).
    [1]

    King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S, Karam N H 2009 Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, Sep. 21-25, 2009 p55

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 805

    [3]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 1

    [4]

    Hashem I E, Carlin C Z, Hagar B G, Colter P C, Bedair S M 2016 J. Appl. Phys. 119 172

    [5]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, Colorado, USA, June 8-13, 2014 p1

    [6]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Proceedings of the 33th IEEE Photovoltaic Specialists Conference San Diego, California, USA, May 11-16, 2008 p1

    [7]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Appl. Phys. Lett. 93 123505

    [8]

    Faine P, Kurtz S R, Olson J M 1990 J. Appl. Phys. 68 339

    [9]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (Second Edition) (New York:Wiley) pp323-326

    [10]

    Kurtz S R, Olson J M, Friedman D J, Geisz J F, Bertness K A, Kibbler A E 1999 Proceedings of the Materials Research Society's Spring Meeting San Francisco, California, USA, April 5-9, 1999 p95

    [11]

    Ghannam M Y, Poortmans J, Nijs J F, Mertens R P 2003 Proceedings of the 3rd world Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p666

    [12]

    Yamaguchi M, Amano C 1985 J. Appl. Phys. 58 3601

    [13]

    Yamaguchi M, Amano C, Itoh Y 1989 J. Appl. Phys. 66 915

    [14]

    1 Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802 (in Chinese)[张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 物理学报 62 158802]

    [15]

    Orders P J, Usher B F 1987 Appl. Phys. Lett. 50 980

    [16]

    People R, Bean J C. 1985 Appl. Phys. Lett. 47 322

    [17]

    Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118

    [18]

    Matthews J W, Mader S, Light T B 1970 J. Appl. Phys. 41 3800

    [19]

    Yastrubchak O, Wosinski T, Domagala J Z, Lusakowska E, Figielski T, Pecz B, Toth A L 2004 J. Phys.:Condens. Matter 16 S1

    [20]

    Chang K H, Bhattacharya P K, Gibala R 1989 J. Appl. Phys. 66 2993

  • [1]

    King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S, Karam N H 2009 Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, Sep. 21-25, 2009 p55

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 805

    [3]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovolt:Res. Appl. 23 1

    [4]

    Hashem I E, Carlin C Z, Hagar B G, Colter P C, Bedair S M 2016 J. Appl. Phys. 119 172

    [5]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, Colorado, USA, June 8-13, 2014 p1

    [6]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Proceedings of the 33th IEEE Photovoltaic Specialists Conference San Diego, California, USA, May 11-16, 2008 p1

    [7]

    Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kieh J T, Romero M J, Norman A G, Jones K M 2008 Appl. Phys. Lett. 93 123505

    [8]

    Faine P, Kurtz S R, Olson J M 1990 J. Appl. Phys. 68 339

    [9]

    Luque A, Hegedus S 2011 Handbook of Photovoltaic Science and Engineering (Second Edition) (New York:Wiley) pp323-326

    [10]

    Kurtz S R, Olson J M, Friedman D J, Geisz J F, Bertness K A, Kibbler A E 1999 Proceedings of the Materials Research Society's Spring Meeting San Francisco, California, USA, April 5-9, 1999 p95

    [11]

    Ghannam M Y, Poortmans J, Nijs J F, Mertens R P 2003 Proceedings of the 3rd world Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p666

    [12]

    Yamaguchi M, Amano C 1985 J. Appl. Phys. 58 3601

    [13]

    Yamaguchi M, Amano C, Itoh Y 1989 J. Appl. Phys. 66 915

    [14]

    1 Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802 (in Chinese)[张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 物理学报 62 158802]

    [15]

    Orders P J, Usher B F 1987 Appl. Phys. Lett. 50 980

    [16]

    People R, Bean J C. 1985 Appl. Phys. Lett. 47 322

    [17]

    Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118

    [18]

    Matthews J W, Mader S, Light T B 1970 J. Appl. Phys. 41 3800

    [19]

    Yastrubchak O, Wosinski T, Domagala J Z, Lusakowska E, Figielski T, Pecz B, Toth A L 2004 J. Phys.:Condens. Matter 16 S1

    [20]

    Chang K H, Bhattacharya P K, Gibala R 1989 J. Appl. Phys. 66 2993

  • [1] Zhang Yong, Shan Zhi-Fa, Cai Jian-Jiu, Wu Hong-Qing, Li Jun-Cheng, Chen Kai-Xuan, Lin Zhi-Wei, Wang Xiang-Wu. Investigation of inverted metamorphic GaInP/GaAs/In0.3Ga0.7As (1 eV) triple junction solar cells for space applications. Acta Physica Sinica, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [2] Lian Rong-Hai, Liang Qi-Bing, Shu Bi-Fen, Fan Chou, Wu Xiao-Long, Guo Yin, Wang Jing, Yang Qing-Chuan. Performance and optimization research of triple-junction solar cell along the optical axis direction on \text{the HCPV module}. Acta Physica Sinica, 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [3] Xiao Wen-Bo, He Xing-Dao, Gao Yi-Qing. Experimental investigation on open-circuit voltage of InGaP/InGaAs/Ge triple-junction solar cell influenced by the vibration direction of the electric vector of linearly polarized light. Acta Physica Sinica, 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [4] Liang Qi-Bing, Shu Bi-Fen, Sun Li-Juan, Zhang Qi-Zi, Chen Ming-Biao. Optimization of light spot intensity and coverage to a triple-junction solar cell under non-uniform illumination. Acta Physica Sinica, 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [5] Lu Guo, Zhang Guang-Cai, Xu Ai-Guo, Fang Bu-Qing, Li Ying-Jun. Evolution of stacking-fault-tetrahedron-like structures in copper crystal. Acta Physica Sinica, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [6] Li Xu-Dong, Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [7] Du Hao, Ni Yu-Shan. Multiscale simulations and ductile-brittle analyses of the atomistic cracks in BCC Ta, Fe and W. Acta Physica Sinica, 2016, 65(19): 196201. doi: 10.7498/aps.65.196201
    [8] Chen Xue-Dong, Fan Zhi-Chao, Jiang Hui-Feng, Zhang Qing-Chuan, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Physica Sinica, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [9] Tang Chen-Guang, Chen Yong-Hai, Wang Zhan-Guo, Zhang Zeng, Zhang Rong, Xie Zi-Li, Liu Bin, Xiu Xiang-Qian, Li Yi, Fu De-Yi, Lu Hai, Chen Peng, Han Ping, Zheng You-Dou. Thickness dependent dislocation, electrical and optical properties in InN films grown by MOCVD. Acta Physica Sinica, 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [10] Chen Li-Qun, Yu Tao, Peng Xiao-Fang, Liu Jian. The site preference of refractory element W in NiAl dislocation core and its effects on bond characters. Acta Physica Sinica, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
  • Citation:
Metrics
  • Abstract views:  257
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2016
  • Accepted Date:  25 October 2016
  • Published Online:  20 February 2017

Analyses of the effect of mismatch on the performance of inverted GaInP/InxGa1-xAs/InyGa1-yAs triple-junction solar cells

    Corresponding author: Chen Nuo-Fu, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn
    Corresponding author: Chen Ji-Kun, nfchen@ncepu.edu.cn;jikunchen@ustb.edu.cn
  • 1. School of Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
  • 2. Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050041, China;
  • 3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Fund Project:  Project supported by the Natural Science Foundation of Beijing,China (Grant No.2151004).

Abstract: The traditional lattice matched GaInP/(In) GaAs/Ge triple-junction (3J) solar cell has no much room to enhance its practical achievable conversion efficiency because of its inappropriate ensemble of bandgap energies. According to the P-N junction formation mechanism and the close equilibrium condition, we explore a series of computational codes in the framework of MATLAB to simulate and optimize the inverted structure of series-connected 3J solar cells with a fixed top bandgap of 1.90 eV on GaAs substrate. In this paper, structural optimization is conducted in the real device design, because the realistic (QE) is closely related to a set of material parameters in the subcell, i.e., the absorbtion coefficient of material, subcell thickness, minority carrier diffusion length, surface recombination velocity, etc. The results indicate improved inverted 3J solar cells with nearly optimized bandgaps of 1.90, 1.38, and 0.94 eV, by utilizing two independently lattice-mismatches (0.17% and 2.36% misfit respectively) to the GaAs substrate. A theoretical efficiency of 51.25% at 500 suns is demonstrated with this inverted design with the optimal thickness (4 m GaInP top and 3.1 m InGaAs middle). By contrast, the efficiency with the infinite thickness of subcells is reduced by 1%, which is mainly attributed to the effect of minority carrier recombination on Jsc. Exactly speaking, if photo-generated carriers make a contribution to Jsc, they must be collected effectively by the P-N junction before recombining. A new model is proposed based on the effect of dislocation on the metamorphic structure properties by regarding dislocation as minority-carrier recombination center. Our calculation indicates that threading dislocations density in the middle junction is approximate to 1.70105 cm-2 when dislocations in the gradient buffer layer are neglected. The theoretical efficiency is increased by 0.3% compared with the inverted design containing a single metamorphic junction. As a result, based on the two metamorphic combinations, a solar cell with an area of 30.25 mm2 is prepared. The efficiency of the designed cell with two lattice-mismatched junctions reaches 40.01% at 500 suns (AM1.5D, 38.4 W/cm2, 25℃), which is 0.4% higher than that of the single metamorphic junction 3J solar cell.

Reference (20)

Catalog

    /

    返回文章
    返回