搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化

连榕海 梁齐兵 舒碧芬 范畴 吴小龙 郭银 汪婧 杨晴川

高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化

连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川
PDF
导出引用
导出核心图
  • 目前, 在高倍聚光光伏模组设计中, 由于对菲涅耳透镜聚光后各波段的光强分布及其非均匀特性缺乏研究和认识, 通常认为在菲涅耳透镜的聚光焦平面处多结太阳电池输出功率最大, 本文通过光线跟踪模拟的方法, 计算并分析菲涅耳透镜聚光下不同波段的光照能量分布和非均匀特性. 同时, 结合三结太阳电池电路网络模型, 研究在高倍聚光光伏模组中, 沿光轴方向不同位置处三结太阳电池的发电性能. 结果表明: 模组输出功率最高位置在焦平面沿光轴方向上下两侧的位置, 优化后模组输出功率比常规设计提高20% 以上. 该模拟结果得到了实验结果的验证.
      通信作者: 舒碧芬, shubifen@163.com
    • 基金项目: 广东省自然科学基金(批准号:2014A030311050)和广东省重大科技专项(批准号:2013A011402005)资助的课题.
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [2]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [3]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [4]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [5]

    Eduardo F F, Florencia A 2015 Energy Convers. Manage. 103 1031

    [6]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [7]

    Zubi G, Bernal-Agustn J L, Fracastoro G 2009 Renew. Sust. Energy Rev. 13 2645

    [8]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [9]

    Yang G H, Wei M, Chen B Z, Dai M C, Guo L M, Wang Z Y 2013 J. Appl. Opt. 34 898 (in Chinese) [杨光辉, 卫明, 陈丙振, 代明崇, 郭丽敏, 王智勇 2013 应用光学 34 898]

    [10]

    Languy F, Fleury K, Lenaerts C, Loicq J, Regaert D, Thibert T, Habraken S 2011 Opt. Express 19 A280

    [11]

    Marc S, Armin B, Alexander D, Frank D, Tobias D, Matt M, Thorsten H, Gerald S, Maike W, Andreas W B 2015 Prog. Photovoltaics 23 1323

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovoltaics 19 73

    [13]

    Steiner M, Guter W, Peharz G, Philipps S P, Dimroth F, Bett A W 2012 Prog. Photovoltaics 20 274

    [14]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [15]

    Rodrigo P, Fernndez E F, Almonacid F, Prez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [16]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [17]

    Jia X J, Ai B, Xu X X, Yang J M, Deng Y J, Shen H 2014 Acta Phys. Sin 63 068801 (in Chinese) [贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉 2014 物理学报 63 068801]

    [18]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin 63 168801 (in Chinese) [梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 物理学报 63 168801]

    [19]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2015 Prog. Photovoltaics 23 1

    [2]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [3]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [4]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [5]

    Eduardo F F, Florencia A 2015 Energy Convers. Manage. 103 1031

    [6]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [7]

    Zubi G, Bernal-Agustn J L, Fracastoro G 2009 Renew. Sust. Energy Rev. 13 2645

    [8]

    Chen N F, Bai Y M 2007 Physics 36 862 (in Chinese) [陈诺夫, 白一鸣 2007 物理 36 862]

    [9]

    Yang G H, Wei M, Chen B Z, Dai M C, Guo L M, Wang Z Y 2013 J. Appl. Opt. 34 898 (in Chinese) [杨光辉, 卫明, 陈丙振, 代明崇, 郭丽敏, 王智勇 2013 应用光学 34 898]

    [10]

    Languy F, Fleury K, Lenaerts C, Loicq J, Regaert D, Thibert T, Habraken S 2011 Opt. Express 19 A280

    [11]

    Marc S, Armin B, Alexander D, Frank D, Tobias D, Matt M, Thorsten H, Gerald S, Maike W, Andreas W B 2015 Prog. Photovoltaics 23 1323

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovoltaics 19 73

    [13]

    Steiner M, Guter W, Peharz G, Philipps S P, Dimroth F, Bett A W 2012 Prog. Photovoltaics 20 274

    [14]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [15]

    Rodrigo P, Fernndez E F, Almonacid F, Prez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [16]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [17]

    Jia X J, Ai B, Xu X X, Yang J M, Deng Y J, Shen H 2014 Acta Phys. Sin 63 068801 (in Chinese) [贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉 2014 物理学报 63 068801]

    [18]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin 63 168801 (in Chinese) [梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 物理学报 63 168801]

    [19]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

  • [1] 梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪. 三结太阳电池在非均匀光照下光斑强度和覆盖比率的优化研究. 物理学报, 2014, 63(16): 168801. doi: 10.7498/aps.63.168801
    [2] 李欣, 林桂江, 刘翰辉, 陈松岩, 刘冠洲. 色散效应对聚光多结太阳电池性能的影响及优化. 物理学报, 2017, 66(14): 148801. doi: 10.7498/aps.66.148801
    [3] 李俊炜, 王祖军, 薛院院. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191878
    [4] 肖文波, 何兴道, 高益庆. 线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响. 物理学报, 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [5] 马大燕, 陈诺夫, 付蕊, 刘虎, 白一鸣, 弭辙, 陈吉堃. 晶格失配对GaInP/InxGa1-xAs/InyGa1-yAs倒装三结太阳电池性能影响的分析. 物理学报, 2017, 66(4): 048801. doi: 10.7498/aps.66.048801
    [6] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [7] 李明, 林文贤, 魏生贤, 徐永锋, 王六玲, 张兴华, 项明, 王云峰. 聚光光强对光伏电池阵列输出性能的影响. 物理学报, 2009, 58(11): 8067-8076. doi: 10.7498/aps.58.8067
    [8] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [9] 林旋英, 张光华, 刘嘉, 晏懋洵, 吴书祥, 许惠英, 吴恩, 毛晋昌. 非晶硅太阳电池的光伏检测磁共振研究. 物理学报, 1988, 37(5): 847-850. doi: 10.7498/aps.37.847
    [10] 许强强, 季旭, 李明, 刘佳星, 李海丽. 菲涅耳聚光下半导体温差发电组件性能研究. 物理学报, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [11] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  354
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-04-10
  • 刊出日期:  2016-07-20

高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化

  • 1. 中山大学工学院, 太阳能系统研究所, 广州 510006
  • 通信作者: 舒碧芬, shubifen@163.com
    基金项目: 

    广东省自然科学基金(批准号:2014A030311050)和广东省重大科技专项(批准号:2013A011402005)资助的课题.

摘要: 目前, 在高倍聚光光伏模组设计中, 由于对菲涅耳透镜聚光后各波段的光强分布及其非均匀特性缺乏研究和认识, 通常认为在菲涅耳透镜的聚光焦平面处多结太阳电池输出功率最大, 本文通过光线跟踪模拟的方法, 计算并分析菲涅耳透镜聚光下不同波段的光照能量分布和非均匀特性. 同时, 结合三结太阳电池电路网络模型, 研究在高倍聚光光伏模组中, 沿光轴方向不同位置处三结太阳电池的发电性能. 结果表明: 模组输出功率最高位置在焦平面沿光轴方向上下两侧的位置, 优化后模组输出功率比常规设计提高20% 以上. 该模拟结果得到了实验结果的验证.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回