[1] |
Tian Shi-Fang, Li Biao. Solving complex nonlinear problems based on gradient-optimized physics-informed neural networks. Acta Physica Sinica,
2023, 72(10): 100202.
doi: 10.7498/aps.72.20222381
|
[2] |
Pei Yi-Tong, Wang Jin-Kun, Guo Bo-Ling, Liu Wu-Ming. Initial value problem of nonlinear KdV-Schrödinger system. Acta Physica Sinica,
2023, 72(10): 100201.
doi: 10.7498/aps.72.20230241
|
[3] |
Zeng Sheng-Yang, Jia Lu, Zhang Shu-Zeng, Li Xiong-Bing, Wang Meng. Second-order perturbation solution and analysis of nonlinear surface waves. Acta Physica Sinica,
2022, 71(16): 164301.
doi: 10.7498/aps.71.20212445
|
[4] |
Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao. Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method. Acta Physica Sinica,
2019, 68(14): 140203.
doi: 10.7498/aps.68.20190340
|
[5] |
Lou Zhi-Mei. A new method to obtain first order approximate conserved quantities of second-ordinary dynamics system containing nonlinear perturbation terms. Acta Physica Sinica,
2014, 63(6): 060202.
doi: 10.7498/aps.63.060202
|
[6] |
Wang Can-Hua, Zhang Li-Fu, Fu Xi-Quan, Wen Shuang-Chun. The study of spatiotemporal perturbation in the nonlinear propagation of broadband chirped pulsed laser. Acta Physica Sinica,
2010, 59(9): 6224-6230.
doi: 10.7498/aps.59.6224
|
[7] |
Cheng Xue-Ping, Lin Ji, Han Ping. Direct perturbation method applied to three-dimensional nonlinear Schr?dinger equation. Acta Physica Sinica,
2010, 59(10): 6752-6756.
doi: 10.7498/aps.59.6752
|
[8] |
Zhao Lei, Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr?dinger equation. Acta Physica Sinica,
2009, 58(7): 4731-4737.
doi: 10.7498/aps.58.4731
|
[9] |
Yang Hong-Juan, Shi Yu-Ren, Duan Wen-Shan, Lü Ke-Pu. Solving solitary wave solutions of nonlinear evolution equations with the homotopy analysis method. Acta Physica Sinica,
2007, 56(6): 3064-3069.
doi: 10.7498/aps.56.3064
|
[10] |
. Solving solitary wave solutions of higher dimensional nonlinear evolution equations with the homotopy analysis method. Acta Physica Sinica,
2007, 56(12): 6791-6796.
doi: 10.7498/aps.56.6791
|
[11] |
Cheng Xue-Ping, Lin Ji, Wang Zhi-Ping. Asymptotic solutions of perturbed N-component nonlinear Schr?dinger equations. Acta Physica Sinica,
2007, 56(6): 3031-3038.
doi: 10.7498/aps.56.3031
|
[12] |
Shi Yu-Ren, Xu Xin-Jian, Wu Zhi-Xi, Wang Ying-Hai, Yang Hong-Juan, Duan Wen-Shan, Lü Ke-Pu. Application of the homotopy analysis method to solving nonlinear evolution equations. Acta Physica Sinica,
2006, 55(4): 1555-1560.
doi: 10.7498/aps.55.1555
|
[13] |
Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing. A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica,
2005, 54(9): 3992-3994.
doi: 10.7498/aps.54.3992
|
[14] |
Ruan Hang-Yu, Li Hui-Jun. Solution of the nonlinear Schr?dinger equation using the generalized Lie group reduction method. Acta Physica Sinica,
2005, 54(3): 996-1001.
doi: 10.7498/aps.54.996
|
[15] |
Zhang Jie-Fang, Xu Chang-Zhi, He Bao-Gang. The variable separation approach and study on solving the variable-coefficient nonlinear Schr?dinger equation. Acta Physica Sinica,
2004, 53(11): 3652-3656.
doi: 10.7498/aps.53.3652
|
[16] |
Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica,
2003, 52(12): 2985-2988.
doi: 10.7498/aps.52.2985
|
[17] |
Wang Ben-Ren. . Acta Physica Sinica,
2002, 51(4): 823-827.
doi: 10.7498/aps.51.823
|
[18] |
TANG YI, YAN JIA-REN, ZHANG KAI-WANG, CHEN ZHEN-HUA. PERTURBATION THEORY FOR SINE-GORDON EQUATION. Acta Physica Sinica,
1999, 48(3): 480-484.
doi: 10.7498/aps.48.480
|
[19] |
HE KAI-FEN, HU GANG. A PERTURBATION METHOD FOR THE NONLINEAR DRIFT WAVES DRIVEN BY A SINUSOIDAL WAVE. Acta Physica Sinica,
1991, 40(12): 1948-1954.
doi: 10.7498/aps.40.1948
|
[20] |
LI FU-BIN. IMPROVEMENTS ON THE PERTURBED HARMONIC OSCILLATOR LADDER OPERATORS METHOD IN THE NON LINEAR QUANTUM FIELD THEORY AND THE LASER THEORY. Acta Physica Sinica,
1989, 38(6): 879-890.
doi: 10.7498/aps.38.879
|