[1] |
Liu Li-Hui, Lü Wei-Yu, Yang Chao, Mai Can-Ji, Chen De-Peng. Propagation properties of partially coherent Hermite-cosh-Gaussian beams in non-Kolmogorov turbulence. Acta Physica Sinica,
2015, 64(3): 034208.
doi: 10.7498/aps.64.034208
|
[2] |
Zhu Kai-Cheng, Tang Hui-Qin, Zheng Xiao-Juan, Tang Ying. Gyrator transform of generalized sinh-Gaussian beam and generation of dark hollow light beam with vortex. Acta Physica Sinica,
2014, 63(10): 104210.
doi: 10.7498/aps.63.104210
|
[3] |
Tang Bi-Hua, Luo Ya-Mei, Jiang Yun-Hai, Chen Shu-Qiong. Study on the characteristics of cosh-Gaussian vortex beams in the far field. Acta Physica Sinica,
2013, 62(13): 134202.
doi: 10.7498/aps.62.134202
|
[4] |
Liu Xiao-Li, Feng Guo-Ying, Li Wei, Tang Chun, Zhou Shou-Huan. Theoretical and experimental study on M2 factor matrix for astigmatic elliptical Gaussian beam. Acta Physica Sinica,
2013, 62(19): 194202.
doi: 10.7498/aps.62.194202
|
[5] |
Zhou Guo-Quan. The beam propagation factor and the kurtosis parameter of a Gaussian vortex beam. Acta Physica Sinica,
2012, 61(17): 174102.
doi: 10.7498/aps.61.174102
|
[6] |
He Xue-Mei, Lü Bai-Da. Dynamic evolution of composite coherence vortices by superimpositions of partially coherent hyperbolic-sine-Gaussian vortex beams in non-Kolmogorov atmospheric turbulence. Acta Physica Sinica,
2012, 61(5): 054201.
doi: 10.7498/aps.61.054201
|
[7] |
Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica,
2012, 61(9): 094206.
doi: 10.7498/aps.61.094206
|
[8] |
Pan Ping-Ping, Zhang Bin. Method for determining the characteristic parameters of the turbulence based on the measurement of M2-factor. Acta Physica Sinica,
2011, 60(1): 014215.
doi: 10.7498/aps.60.014215
|
[9] |
Ji Xiao-Ling. Influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams. Acta Physica Sinica,
2011, 60(6): 064207.
doi: 10.7498/aps.60.064207
|
[10] |
Liu Fei, Ji Xiao-Ling. Beam propagation factor of cosh-Gaussian array beams propagating through atmospheric turbulence. Acta Physica Sinica,
2011, 60(1): 014216.
doi: 10.7498/aps.60.014216
|
[11] |
Li Xiao-Qing, Ji Xiao-Ling. Generalized M2G factor of truncated partially coherent Hermite-Gaussian beam. Acta Physica Sinica,
2011, 60(9): 094206.
doi: 10.7498/aps.60.094206
|
[12] |
Li Jin-Hong, Yang Ai-Lin, Lü Bai-Da. Evolution of average intensity distribution and angular spread of partially coherent Hermite-sinh-Gaussian beams propagating through turbulent atmosphere. Acta Physica Sinica,
2009, 58(1): 674-683.
doi: 10.7498/aps.58.674
|
[13] |
Li Wei, Chen Jian-Guo, Feng Guo-Ying, Huang Yu, Li Gang, Xie Xu-Dong, Yang Huo-Mu, Zhou Shou-Huan. M2 factor matrix for two-dimensional Hermite-Gaussian beam. Acta Physica Sinica,
2009, 58(4): 2461-2466.
doi: 10.7498/aps.58.2461
|
[14] |
Li Jian-Long, Lü Bai-Da. A comparative study of propagation properties of Hermite-Gaussian beams through gratings with sinusoidal and rectangular reliefs. Acta Physica Sinica,
2007, 56(10): 5772-5777.
doi: 10.7498/aps.56.5772
|
[15] |
Dan You-Quan, Zhang Bin. Coherent-mode representation of the elegant Hermite-Gaussian beams. Acta Physica Sinica,
2006, 55(2): 712-716.
doi: 10.7498/aps.55.712
|
[16] |
Ji Xiao-Ling, Huang Tai-Xing, Lü Bai-Da. Spreading of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere. Acta Physica Sinica,
2006, 55(2): 978-982.
doi: 10.7498/aps.55.978
|
[17] |
Luo Shi-Rong, Lü Bai-Da. Generalized M2 factor of truncated beams in the cylindrical coordinate system. Acta Physica Sinica,
2004, 53(1): 82-86.
doi: 10.7498/aps.53.82
|
[18] |
Luo Shi-Rong, Lü Bai-Da, Sun Nian-Chun. Generalized M 2 factor of truncated beams. Acta Physica Sinica,
2004, 53(7): 2145-2149.
doi: 10.7498/aps.53.2145
|
[19] |
Zeng Qing-Gang, Wen Qiao, Zhang Bin. The generalized M2-factor and coherent-mode decomposition of truncated flat-topped beams. Acta Physica Sinica,
2004, 53(5): 1357-1361.
doi: 10.7498/aps.53.1357
|
[20] |
Wang Xi-Qing, Lu Bai-Da. . Acta Physica Sinica,
2002, 51(2): 247-252.
doi: 10.7498/aps.51.247
|