-
运用电磁光束的角谱法和稳相法, 推导出双曲余弦高斯(ChG) 涡旋光束的TE波和TM波在自由空间远场传输和能流密度的解析表达式, 用以研究了ChG涡旋光束在远场中的位相奇点和能流密度分布特性. 结果表明, 改变ChG 涡旋光束中的离心参数或束腰宽度, 位相奇点的密度、位置会发生变化. 涡旋离轴量的变化会导致能流密度分布的不对称性. 当离心参数增大时, 原点周围黑核会向原点中心移动.
-
关键词:
- 双曲余弦高斯涡旋光束 /
- 位相奇点 /
- 能流密度
Based on the methods of vector angular spectrum of electromagnetic beams and stationary phase, the analytical expressions of TE and TM terms and energy flux distributions of cosh-Gaussian (ChG) vortex beams in the far field are derived, and used to study the phase singularities and energy flux distributions of the ChG vortex beams. It is shown that the density and position of optical vortices will vary by changing decentered parameter or waist width in the ChG vortex beams. The vortex off-axis distance leads to an asymmetric spatial distribution of energy flux. With gradually increasing vortex off-axis distance, dark spots around the origin will move toward the origin center.[1] Soskin M S, Vasnetsov M V 2001 Progress in Optics 42 219
[2] Foley J T, Wolf E 2002 J. Opt. Soc. Am. A 19 2510
[3] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448
[4] Grier D G 2003 Nature 424 810
[5] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169
[6] He D, Yan H W, L B D 2009 Chin. J. Lasers 36 2023 (in Chinese) [何德, 闫红卫, 吕百达 2009 中国激光 36 2023]
[7] Mitri F G, Silva G T 2011 Wave Motion 48 392
[8] Cheng K, Liu P S, L B D 2008 Chin. Phys. B 17 1743
[9] Rao L Z, Pu J X 2007 Chin. Phys. Lett. 24 1252
[10] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 064103 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 064103]
[11] Cheng K, L B D 2011 Optik 122 604
[12] Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]
[13] Zhou G Q, Cai Y J, Chu X X 2012 Opt. Express 20 9897
[14] Zhou G Q 2008 Appl. Phys. B 93 891
[15] Zhou G Q 2006 Opt. Lett. 31 2616
[16] Deng D G, Fu X Y, Tian Y W, Yi K, Shao J D, Fan Z X 2005 Opt. Commun. 248 185
[17] Zou Q H, L B D 2005 Acta Phys. Sin. 54 5642 (in Chinese) [邹其徽, 吕百达 2005 物理学报 54 5642]
[18] Long X W, Lu K Q, Zhang Y H, Guo J B, Li K H 2011 Optik 122 1448
[19] Li J, Chen Y R, Xu S X, Wang Y Q, Zhou M C, Zhao Q, Xin Y, Chen F N 2011 Opt. Laser Technol. 43 152
[20] Jia X T, Wang Y Q 2011 Opt. Lett. 36 295
[21] Wu G H, Lou Q H, Zhou J 2008 Opt. Express 16 6417
[22] Zhou G Q, Liu F Q 2008 Opt. Laser Technol. 40 302
-
[1] Soskin M S, Vasnetsov M V 2001 Progress in Optics 42 219
[2] Foley J T, Wolf E 2002 J. Opt. Soc. Am. A 19 2510
[3] Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448
[4] Grier D G 2003 Nature 424 810
[5] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169
[6] He D, Yan H W, L B D 2009 Chin. J. Lasers 36 2023 (in Chinese) [何德, 闫红卫, 吕百达 2009 中国激光 36 2023]
[7] Mitri F G, Silva G T 2011 Wave Motion 48 392
[8] Cheng K, Liu P S, L B D 2008 Chin. Phys. B 17 1743
[9] Rao L Z, Pu J X 2007 Chin. Phys. Lett. 24 1252
[10] Ding P F, Pu J X 2012 Acta Phys. Sin. 61 064103 (in Chinese) [丁攀峰, 蒲继雄 2012 物理学报 61 064103]
[11] Cheng K, L B D 2011 Optik 122 604
[12] Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]
[13] Zhou G Q, Cai Y J, Chu X X 2012 Opt. Express 20 9897
[14] Zhou G Q 2008 Appl. Phys. B 93 891
[15] Zhou G Q 2006 Opt. Lett. 31 2616
[16] Deng D G, Fu X Y, Tian Y W, Yi K, Shao J D, Fan Z X 2005 Opt. Commun. 248 185
[17] Zou Q H, L B D 2005 Acta Phys. Sin. 54 5642 (in Chinese) [邹其徽, 吕百达 2005 物理学报 54 5642]
[18] Long X W, Lu K Q, Zhang Y H, Guo J B, Li K H 2011 Optik 122 1448
[19] Li J, Chen Y R, Xu S X, Wang Y Q, Zhou M C, Zhao Q, Xin Y, Chen F N 2011 Opt. Laser Technol. 43 152
[20] Jia X T, Wang Y Q 2011 Opt. Lett. 36 295
[21] Wu G H, Lou Q H, Zhou J 2008 Opt. Express 16 6417
[22] Zhou G Q, Liu F Q 2008 Opt. Laser Technol. 40 302
计量
- 文章访问数: 6814
- PDF下载量: 577
- 被引次数: 0