搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干刃型位错光束的谱Stokes奇点

郑尚彬 唐碧华 姜云海 罗亚梅 高曾辉

引用本文:
Citation:

部分相干刃型位错光束的谱Stokes奇点

郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉

Spectral Stokes singularities of partially coherent edge dislocation beams

Zheng Shang-Bin, Tang Bi-Hua, Jiang Yun-Hai, Luo Ya-Mei, Gao Zeng-Hui
PDF
导出引用
  • 利用交叉谱密度函数的传输公式, 推导出部分相干刃型位错光束在自由空间中传输的解析表达式. 结合谱Stokes 参数, 详细讨论了其Stokes场的奇点变化规律. 结果表明, 部分相干刃型位错光束在自由空间传输过程中存在谱s12, s23和s31奇点. 改变刃型位错的离轴量、斜率、空间相关长度等光束参数以及随着传输距离的变化, 会有谱Stokes奇点的移动、产生和湮没, 也会有V点的产生和C点旋性的反转.
    The polarization singularities in vector wavefields have been extensively studied analytically and experimentally. The polarization singularities can be analyzed by using electromagnetic theory or Stokes parameters, or be described in terms of complex Stokes scalar fields. In some practical applications, partially coherent beams have more advantages than fully coherent beams. Recently, the concept of the polarization singularities has been extended from fully coherent beams to partially coherent beams. In this paper, using the representation of cross-spectral density matrix propagation, the explicit propagation expressions for the partially coherent edge dislocation beams are derived in free space, and based on the spectral Stokes parameters the spectral singularities are studied in detail. It is shown that there exist spectral s12, s23 and s31 singularities of partially coherent edge dislocation beams in free-space propagation. s12 singularities correspond to circular polarization (C-points) of the partially coherent edge dislocation beams, and s30 (s30) means right-(left-) handedness, where the orientations of the major and minor axes of the polarization ellipse become undefined. s23 and s31 singularities must be located on L-lines, where the handedness of the polarization ellipse is undetermined (linear polarization). The motion, creation and annihilation of spectral Stokes singularities may appear in the variation of a controlling parameter, such as off-axis distance, slope of edge dislocation, spatial correlation length, or in the variation of the propagation distance. By suitably varying the spatial correlation length or propagation distance the V-point, the handedness reversal of C-point, creation and annihilation for a pair of oppositely charged spectral singularities take place. The creation and annihilation occur for a pair of s12 singularities with opposite topological charge but same handedness. The critical points of the controlling parameters and propagation distance, at which pairs of different spectral singularities annihilate, are not the same. The collision of the C-point and L-line results in a V-point (vector singularity), which is unstable. A small perturbation leads to the handedness reversal. At such a point the state of polarization is undetermined and the degree of polarization P=0. The results obtained in this paper would be useful for a deep understanding of polarization singularities of stochastic electromagnetic beams.
      通信作者: 罗亚梅, luoluoeryan@126.com
    • 基金项目: 国家自然科学基金(批准号: 61275203)和四川省教育厅自然科学基金(批准号: 15CZ0017) 资助的课题.
      Corresponding author: Luo Ya-Mei, luoluoeryan@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275203) and the Natural Science Foundation of the Education Department of Sichuan Province, China (Grant No. 15CZ0017).
    [1]

    Nye J F, Hajnal J V 1987 Proc. R. Soc. Lond. A 409 21

    [2]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [3]

    Nye J F 1999 Natural Focusing and the Fine Structure of Light (Bristol: IOP Publishing)

    [4]

    Luo Y M, Gao Z H, Tang B H, L B D 2014 Acta Phys. Sin. 63 154201 (in Chinese) [罗亚梅, 高曾辉, 唐碧华, 吕百达 2014 物理学报 63 154201]

    [5]

    Konukhov A I, Melnikov L A 2001 J. Opt. B 3 S139

    [6]

    Freund I 2001 Opt. Lett. 26 1996

    [7]

    Freund I 2002 Opt. Commun. 201 251

    [8]

    Mokhun A I, Soskin M S, Freund I 2002 Opt. Lett. 27 995

    [9]

    Freund I, Mokhun A I, Soskin M S 2002 Opt. Lett. 27 545

    [10]

    Angelsky O, Mokhun A, Mokhun I 2002 Opt. Commun. 207 57

    [11]

    Angelsky O V, Mokhum I I, Mokhum A I 2002 Phys. Rev. E 65 036602

    [12]

    Soskin M S, Denisenko V, Freund I 2003 Opt. Lett. 28 1475

    [13]

    Flossmann F, Schwarz U T, Maier M 2005 Phys. Rev. Lett. 95 253901

    [14]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733

    [15]

    Dennis M R 2008 Opt. Lett. 33 2572

    [16]

    Felde C V, Chernyshov A A, Bogatyryova G V 2008 JETP Lett. 88 418

    [17]

    Chernyshov A A, Felde Ch V, Bogatyryova H V 2009 J. Opt. A: Pure Appl. Opt. 11 094010

    [18]

    Yan H W, L B D 2009 Opt. Lett. 34 1933

    [19]

    Soskin M S, Denisenko V G, Egorov R I 2004 Proc. SPIE 5458 79

    [20]

    Bliokh K Y, Niv A, Kleiner V 2008 Opt. Express 16 695

    [21]

    Korotkova O, Wolf E 2005 Opt. Lett. 30 198

    [22]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press)

    [23]

    He D, Yan H, L B D 2011 Chin. Phys. B 20 014201

    [24]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164

  • [1]

    Nye J F, Hajnal J V 1987 Proc. R. Soc. Lond. A 409 21

    [2]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [3]

    Nye J F 1999 Natural Focusing and the Fine Structure of Light (Bristol: IOP Publishing)

    [4]

    Luo Y M, Gao Z H, Tang B H, L B D 2014 Acta Phys. Sin. 63 154201 (in Chinese) [罗亚梅, 高曾辉, 唐碧华, 吕百达 2014 物理学报 63 154201]

    [5]

    Konukhov A I, Melnikov L A 2001 J. Opt. B 3 S139

    [6]

    Freund I 2001 Opt. Lett. 26 1996

    [7]

    Freund I 2002 Opt. Commun. 201 251

    [8]

    Mokhun A I, Soskin M S, Freund I 2002 Opt. Lett. 27 995

    [9]

    Freund I, Mokhun A I, Soskin M S 2002 Opt. Lett. 27 545

    [10]

    Angelsky O, Mokhun A, Mokhun I 2002 Opt. Commun. 207 57

    [11]

    Angelsky O V, Mokhum I I, Mokhum A I 2002 Phys. Rev. E 65 036602

    [12]

    Soskin M S, Denisenko V, Freund I 2003 Opt. Lett. 28 1475

    [13]

    Flossmann F, Schwarz U T, Maier M 2005 Phys. Rev. Lett. 95 253901

    [14]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733

    [15]

    Dennis M R 2008 Opt. Lett. 33 2572

    [16]

    Felde C V, Chernyshov A A, Bogatyryova G V 2008 JETP Lett. 88 418

    [17]

    Chernyshov A A, Felde Ch V, Bogatyryova H V 2009 J. Opt. A: Pure Appl. Opt. 11 094010

    [18]

    Yan H W, L B D 2009 Opt. Lett. 34 1933

    [19]

    Soskin M S, Denisenko V G, Egorov R I 2004 Proc. SPIE 5458 79

    [20]

    Bliokh K Y, Niv A, Kleiner V 2008 Opt. Express 16 695

    [21]

    Korotkova O, Wolf E 2005 Opt. Lett. 30 198

    [22]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press)

    [23]

    He D, Yan H, L B D 2011 Chin. Phys. B 20 014201

    [24]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164

  • [1] 冯姣姣, 段美玲, 单晶, 王灵辉, 薛婷. 部分相干混合位错光束在生物组织传输中的偏振特性. 物理学报, 2024, 73(18): 184101. doi: 10.7498/aps.73.20240985
    [2] 袁鹏举, 杨蕴哲, 董世杰, 唐苗苗. 镜像与反镜像扭曲高斯谢尔模光束的传输特性. 物理学报, 2024, 73(21): 214201. doi: 10.7498/aps.73.20241023
    [3] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [4] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211411
    [5] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [6] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [7] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [8] 郑尚彬, 唐碧华, 姜云海, 高曾辉, 罗亚梅. 随机电磁光束经像散透镜后磁场的光谱Stokes奇点. 物理学报, 2016, 65(23): 234201. doi: 10.7498/aps.65.234201
    [9] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [10] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [11] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [12] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [13] 陈海涛, 高曾辉, 肖尚辉, 王藩侯, 程晓洪. 有倾斜透镜存在时两个刃型位错的相互作用. 物理学报, 2013, 62(4): 044207. doi: 10.7498/aps.62.044207
    [14] 程科, 张洪润, 吕百达. 部分相干涡旋光束形成的相干涡旋特性研究. 物理学报, 2010, 59(1): 246-255. doi: 10.7498/aps.59.246
    [15] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [16] 陈丽群, 于涛, 夏灿芳, 邱正琛. Fe中刃型位错上扭折及掺杂体系的电子结构. 物理学报, 2009, 58(13): 235-S240. doi: 10.7498/aps.58.235
    [17] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [18] 陈丽群, 于 涛, 王崇愚, 邱正琛. 杂质P对α-Fe中刃型位错上扭折电子结构的影响. 物理学报, 2008, 57(1): 443-447. doi: 10.7498/aps.57.443
    [19] 陈丽群, 王崇愚, 于 涛. bcc Fe中刃型位错的结构及能量学研究. 物理学报, 2006, 55(11): 5980-5986. doi: 10.7498/aps.55.5980
    [20] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性. 物理学报, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
计量
  • 文章访问数:  6608
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 修回日期:  2015-08-31
  • 刊出日期:  2016-01-05

/

返回文章
返回